So sánh adn polymerase và rna polymerase

Qβ replicase template specificity: different templates require different GTP concentrations for initiation. Proc. Natl. Acad. Sci. U. S. A. 77, 2601–2605 10.1073/pnas.77.5.2601[PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Lesburg C. A., Cable M. B., Ferrari E., Hong Z., Mannarino A. F., and Weber P. C. (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6, 937–943 10.1038/13305 [PubMed] [CrossRef] [Google Scholar]

7. Li Y., Mitaxov V., and Waksman G. (1999) Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc. Natl. Acad. Sci. U. S. A. 96, 9491–9496 10.1073/pnas.96.17.9491[PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Patra A., Zhang Q., Lei L., Su Y., Egli M., and Guengerich F. P. (2015) Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. J. Biol. Chem. 290, 8028–8038 10.1074/jbc.M115.637561[PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. O'Flaherty D. K., and Guengerich F. P. (2014) Steady-state kinetic analysis of DNA polymerase single-nucleotide incorporation products. Curr. Protoc. Nucleic Acid Chem. 59, 7.21.1–7.21.13 10.1002/0471142700.nc0721s59[PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Joyce C. M. (2010) Techniques used to study the DNA polymerase reaction pathway. Biochim. Biophys. Acta 1804, 1032–1040 10.1016/j.bbapap.2009.07.021[PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Engstrom Y., Eriksson S., Jildevik I., Skog S., Thelander L., and Tribukait B. (1985) Cell cycle-dependent expression of mammalian ribonucleotide reductase: differential regulation of the two subunits. J. Biol. Chem. 260, 9114–9116 [PubMed] [Google Scholar]

12. Coppock D. L., and Pardee A. B. (1987) Control of thymidine kinase mRNA during the cell cycle. Mol. Cell Biol. 7, 2925–2932 10.1128/mcb.7.8.2925[PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Reichard P. (1985) Ribonucleotide reductase and deoxyribonucleotide pools. Basic Life Sci. 31, 33–45 10.1007/978-1-4613-2449-2_3 [PubMed] [CrossRef] [Google Scholar]

14. Reichard P. (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374 10.1146/annurev.bi.57.070188.002025 [PubMed] [CrossRef] [Google Scholar]

15. Franzolin E., Pontarin G., Rampazzo C., Miazzi C., Ferraro P., Palumbo E., Reichard P., and Bianchi V. (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 110, 14272–14277 10.1073/pnas.1312033110[PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Schott K., Fuchs N. V., Derua R., Mahboubi B., Schnellbächer E., Seifried J., Tondera C., Schmitz H., Shepard C., Brandariz-Nuñez A., Diaz-Griffero F., Reuter A., Kim B., Janssens V., and König R. (2018) Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit. Nat. Commun. 9, 2227 10.1038/s41467-018-04671-1[PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Lee E. J., Seo J. H., Park J. H., Vo T. T. L., An S., Bae S. J., Le H., Lee H. S., Wee H. J., Lee D., Chung Y. H., Kim J. A., Jang M. K., Ryu S. H., Yu E., et al. (2017) SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget 8, 68517–68529 10.18632/oncotarget.19704[PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Fairman J. W., Wijerathna S. R., Ahmad M. F., Xu H., Nakano R., Jha S., Prendergast J., Welin R. M., Flodin S., Roos A., Nordlund P., Li Z., Walz T., and Dealwis C. G. (2011) Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat. Struct. Mol. Biol. 18, 316–322 10.1038/nsmb.2007[PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Zhu C. F., Wei W., Peng X., Dong Y. H., Gong Y., and Yu X. F. (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr. D Biol. Crystallogr. 71, 516–524 10.1107/S1399004714027527 [PubMed] [CrossRef] [Google Scholar]

20. Traut T. W. (1994) Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 140, 1–22 10.1007/BF00928361 [PubMed] [CrossRef] [Google Scholar]

21. Diamond T. L., Roshal M., Jamburuthugoda V. K., Reynolds H. M., Merriam A. R., Lee K. Y., Balakrishnan M., Bambara R. A., Planelles V., Dewhurst S., and Kim B. (2004) Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J. Biol. Chem. 279, 51545–51553 10.1074/jbc.M408573200[PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Reardon J. E. (1989) Herpes simplex virus type 1 and human DNA polymerase interactions with 2'-deoxyguanosine 5'-triphosphate analogues: kinetics of incorporation into DNA and induction of inhibition. J. Biol. Chem. 264, 19039–19044 [PubMed] [Google Scholar]

23. Copeland W. C., Chen M. S., and Wang T. S. (1992) Human DNA polymerases α and β are able to incorporate anti-HIV deoxynucleotides into DNA. J. Biol. Chem. 267, 21459–21464 [PubMed] [Google Scholar]

24. Starnes M. C., and Cheng Y. C. (1987) Cellular metabolism of 2',3'-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J. Biol. Chem. 262, 988–991 [PubMed] [Google Scholar]

25. Daikoku T., Yamamoto N., Saito S., Kitagawa M., Shimada N., and Nishiyama Y. (1991) Mechanism of inhibition of human cytomegalovirus replication by oxetanocin G. Biochem. Biophys. Res. Commun. 176, 805–812 10.1016/S0006-291X(05)80257-8 [PubMed] [CrossRef] [Google Scholar]

26. Kamiya H., and Kasai H. (1995) Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases: steady-state kinetics of the incorporation. J. Biol. Chem. 270, 19446–19450 10.1074/jbc.270.33.19446 [PubMed] [CrossRef] [Google Scholar]

27. Fisher P. A., Wang T. S., and Korn D. (1979) Enzymological characterization of DNA polymerase α: basic catalytic properties processivity, and gap utilization of the homogeneous enzyme from human KB cells. J. Biol. Chem. 254, 6128–6137 [PubMed] [Google Scholar]

28. Dieckman L. M., Johnson R. E., Prakash S., and Washington M. T. (2010) Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. Biochemistry 49, 7344–7350 10.1021/bi100556m[PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Einolf H. J., and Guengerich F. P. (2000) Kinetic analysis of nucleotide incorporation by mammalian DNA polymerase δ. J. Biol. Chem. 275, 16316–16322 10.1074/jbc.M001291200 [PubMed] [CrossRef] [Google Scholar]

30. Cheng C. H., and Kuchta R. D. (1993) DNA polymerase epsilon: aphidicolin inhibition and the relationship between polymerase and exonuclease activity. Biochemistry 32, 8568–8574 10.1021/bi00084a025 [PubMed] [CrossRef] [Google Scholar]

31. Syvaoja J., and Linn S. (1989) Characterization of a large form of DNA polymerase δ from HeLa cells that is insensitive to proliferating cell nuclear antigen. J. Biol. Chem. 264, 2489–2497 [PubMed] [Google Scholar]

32. Allaudeen H. S., Kozarich J. W., Bertino J. R., and De Clercq E. (1981) On the mechanism of selective inhibition of herpesvirus replication by (E)-5-(2-bromovinyl)-2'-deoxyuridine. Proc. Natl. Acad. Sci. U. S. A. 78, 2698–2702 10.1073/pnas.78.5.2698[PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Foster S. A., Cerny J., and Cheng Y. C. (1991) Herpes simplex virus-specified DNA polymerase is the target for the antiviral action of 9-(2-phosphonylmethoxyethyl)adenine. J. Biol. Chem. 266, 238–244 [PubMed] [Google Scholar]

34. Mao J. C., and Robishaw E. E. (1975) Mode of inhibition of herpes simplex virus DNA polymerase by phosphonoacetate. Biochemistry 14, 5475–5479 10.1021/bi00696a015 [PubMed] [CrossRef] [Google Scholar]

35. Derse D., Cheng Y. C., Furman P. A., St Clair M. H., and Elion G. B. (1981) Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate: effects on primer-template function. J. Biol. Chem. 256, 11447–11451 [PubMed] [Google Scholar]

36. Allaudeen H. S. (1985) Distinctive properties of DNA polymerases induced by herpes simplex virus type-1 and Epstein-Barr virus. Antiviral Res. 5, 1–12 10.1016/0166-3542(85)90010-5 [PubMed] [CrossRef] [Google Scholar]

37. Meisel H., Reimer K., von Janta-Lipinski M., Bärwolff D., and Matthes E. (1990) Inhibition of hepatitis B virus DNA polymerase by 3'-fluorothymidine triphosphate and other modified nucleoside triphosphate analogs. J. Med. Virol. 30, 137–141 10.1002/jmv.1890300211 [PubMed] [CrossRef] [Google Scholar]

38. Park S. G., Kim Y., Park E., Ryu H. M., and Jung G. (2003) Fidelity of hepatitis B virus polymerase. Eur. J. Biochem. 270, 2929–2936 10.1046/j.1432-1033.2003.03650.x [PubMed] [CrossRef] [Google Scholar]

39. Oh S. H., Park Y. H., and Woo K. (1989) Inactivation of human hepatitis B virus DNA polymerase by pyridoxal 5'-phosphate. J. Med. Virol. 28, 42–46 10.1002/jmv.1890280110 [PubMed] [CrossRef] [Google Scholar]

40. Matthes E., Reimer K., von Janta-Lipinski M., Meisel H., and Lehmann C. (1991) Comparative inhibition of hepatitis B virus DNA polymerase and cellular DNA polymerases by triphosphates of sugar-modified 5-methyldeoxycytidines and of other nucleoside analogs. Antimicrob. Agents Chemother. 35, 1254–1257 10.1128/aac.35.6.1254[PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Kopp E. B., Miglietta J. J., Shrutkowski A. G., Shih C. K., Grob P. M., and Skoog M. T. (1991) Steady state kinetics and inhibition of HIV-1 reverse transcriptase by a non-nucleoside dipyridodiazepinone, BI-RG-587, using a heteropolymeric template. Nucleic Acids Res. 19, 3035–3039 10.1093/nar/19.11.3035[PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Woodside A. M., and Guengerich F. P. (2002) Effect of the O6 substituent on misincorporation kinetics catalyzed by DNA polymerases at O6-methylguanine and O6-benzylguanine. Biochemistry 41, 1027–1038 10.1021/bi011495n [PubMed] [CrossRef] [Google Scholar]

43. Furge L. L., and Guengerich F. P. (1997) Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics. Biochemistry 36, 6475–6487 10.1021/bi9627267 [PubMed] [CrossRef] [Google Scholar]

44. Gandhi V. V., and Samuels D. C. (2011) A review comparing deoxyribonucleoside triphosphate (dNTP) concentrations in the mitochondrial and cytoplasmic compartments of normal and transformed cells. Nucleosides Nucleotides Nucleic Acids 30, 317–339 10.1080/15257770.2011.586955[PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Skoog L., and Bjursell G. (1974) Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in Chinese hamster ovary cells. J. Biol. Chem. 249, 6434–6438 [PubMed] [Google Scholar]

46. Jackson R. C., Lui M. S., Boritzki T. J., Morris H. P., and Weber G. (1980) Purine and pyrimidine nucleotide patterns of normal, differentiating, and regenerating liver and of hepatomas in rats. Cancer Res. 40, 1286–1291 [PubMed] [Google Scholar]

47. Mathews C. K. (2015) Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat. Rev. Cancer 15, 528–539 10.1038/nrc3981 [PubMed] [CrossRef] [Google Scholar]

48. Schmidt S., Schenkova K., Adam T., Erikson E., Lehmann-Koch J., Sertel S., Verhasselt B., Fackler O. T., Lasitschka F., and Keppler O. T. (2015) SAMHD1's protein expression profile in humans. J. Leukoc. Biol. 98, 5–14 10.1189/jlb.4HI0714-338RR[PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Jin C., Peng X., Liu F., Cheng L., Lu X., Yao H., Wu H., and Wu N. (2014) MicroRNA-181 expression regulates specific post-transcriptional level of SAMHD1 expression in vitro. Biochem. Biophys. Res. Commun. 452, 760–767 10.1016/j.bbrc.2014.08.151 [PubMed] [CrossRef] [Google Scholar]

50. Bester A. C., Roniger M., Oren Y. S., Im M. M., Sarni D., Chaoat M., Bensimon A., Zamir G., Shewach D. S., and Kerem B. (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 10.1016/j.cell.2011.03.044[PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Huang C. Y., Yagüe-Capilla M., González-Pacanowska D., and Chang Z. F. (2020) Quantitation of deoxynucleoside triphosphates by click reactions. Sci. Rep. 10, 611 10.1038/s41598-020-57463-3[PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Kuskovsky R., Buj R., Xu P., Hofbauer S., Doan M. T., Jiang H., Bostwick A., Mesaros C., Aird K. M., and Snyder N. W. (2019) Simultaneous isotope dilution quantification and metabolic tracing of deoxyribonucleotides by liquid chromatography high resolution mass spectrometry. Anal. Biochem. 568, 65–72 10.1016/j.ab.2018.12.023[PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Zhang W., Tan S., Paintsil E., Dutschman G. E., Gullen E. A., Chu E., and Cheng Y. C. (2011) Analysis of deoxyribonucleotide pools in human cancer cell lines using a liquid chromatography coupled with tandem mass spectrometry technique. Biochem. Pharmacol. 82, 411–417 10.1016/j.bcp.2011.05.009[PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Ferraro P., Franzolin E., Pontarin G., Reichard P., and Bianchi V. (2010) Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 38, e85 10.1093/nar/gkp1141[PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Loeb L. A., and Monnat R. J. Jr. (2008) DNA polymerases and human disease. Nat. Rev. Genet. 9, 594–604 10.1038/nrg2345 [PubMed] [CrossRef] [Google Scholar]

56. Gallo R. C. (1972) Analytical review: RNA-dependent DNA polymerase in viruses and cells: views on the current state. Blood 39, 117–137 10.1182/blood.V39.1.117.117 [PubMed] [CrossRef] [Google Scholar]

57. Lujan S. A., Williams J. S., and Kunkel T. A. (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol. 26, 640–654 10.1016/j.tcb.2016.04.012[PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Tan C. K., Castillo C., So A. G., and Downey K. M. (1986) An auxiliary protein for DNA polymerase-δ from fetal calf thymus. J. Biol. Chem. 261, 12310–12316 [PubMed] [Google Scholar]

59. Mondol T., Stodola J. L., Galletto R., and Burgers P. M. (2019) PCNA accelerates the nucleotide incorporation rate by DNA polymerase δ. Nucleic Acids Res. 47, 1977–1986 10.1093/nar/gky1321[PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Cherrington J. M., Allen S. J., McKee B. H., and Chen M. S. (1994) Kinetic analysis of the interaction between the diphosphate of (S)-1-(3-hydroxy-2-phosphonylemthoxypropyl)cytosine, ddCTP, AZTTP, and FIAUTP with human DNA polymerases β and γ. Biochem. Pharmacol. 48, 1986–1988 10.1016/0006-2952(94)90600-9 [PubMed] [CrossRef] [Google Scholar]

61. Vande Berg B. J., Beard W. A., and Wilson S. H. (2001) DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β: implication for the identity of the rate-limiting conformational change. J. Biol. Chem. 276, 3408–3416 10.1074/jbc.M002884200 [PubMed] [CrossRef] [Google Scholar]

62. Souza T. M., De Souza M. C., Ferreira V. F., Canuto C. V., Marques I. P., Fontes C. F., and Frugulhetti I. C. (2008) Inhibition of HSV-1 replication and HSV DNA polymerase by the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(β-d-ribofuranosyl) quinoline-3-carboxylic acid and its aglycone. Antiviral Res. 77, 20–27 10.1016/j.antiviral.2007.08.011 [PubMed] [CrossRef] [Google Scholar]

63. Magee W. C., Hostetler K. Y., and Evans D. H. (2005) Mechanism of inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob. Agents Chemother. 49, 3153–3162 10.1128/AAC.49.8.3153-3162.2005[PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. McDonald W. F., and Traktman P. (1994) Overexpression and purification of the vaccinia virus DNA polymerase. Protein Expr. Purif. 5, 409–421 10.1006/prep.1994.1059 [PubMed] [CrossRef] [Google Scholar]

65. Xiong X., Smith J. L., Kim C., Huang E-S., and Chen M. S. (1996) Kinetic analysis of the interaction of cidofovir diphosphate with human cytomegalovirus DNA polymerase. Biochem. Pharmacol. 51, 1563–1567 10.1016/0006-2952(96)00100-1 [PubMed] [CrossRef] [Google Scholar]

66. Suzuki S., Kimura T., and Saneyoshi M. (1986) Characterization of DNA polymerase induced by salmon herpesvirus, Oncorhynchus masou virus. J. Gen. Virol. 67, 405–408 10.1099/0022-1317-67-2-405 [PubMed] [CrossRef] [Google Scholar]

67. Suzuki S., Misra H. K., Wiebe L. I., Knaus E. E., and Tyrrell D. L. (1987) A proposed mechanism for the selective inhibition of human cytomegalovirus replication by 1-(2'-deoxy-2'-fluoro-β-d-arabinofuranosyl)-5-fluorouracil. Mol. Pharmacol. 31, 301–306 [PubMed] [Google Scholar]

68. Suzuki S., Saneyoshi M., Nakayama C., Nishiyama Y., and Yoshida S. (1985) Mechanism of selective inhibition of human cytomegalovirus replication by 1-β-d-arabinofuranosyl-5-fluorouracil. Antimicrob. Agents Chemother. 28, 326–330 10.1128/aac.28.2.326[PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Velpandi A., Nagashunmugam T., Murthy S., Cartas M., Monken C., and Srinivasan A. (1991) Generation of hybrid human immunodeficiency virus utilizing the cotransfection method and analysis of cellular tropism. J. Virol. 65, 4847–4852 10.1128/JVI.65.9.4847-4852.1991[PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Fenyo E. M., Albert J., and Asjo B. (1989) Replicative capacity, cytopathic effect and cell tropism of HIV. AIDS 3, S5–S12 10.1097/00002030-198901001-00002 [PubMed] [CrossRef] [Google Scholar]

71. Connor R. I., Sheridan K. E., Ceradini D., Choe S., and Landau N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1–infected individuals. J. Exp. Med. 185, 621–628 10.1084/jem.185.4.621[PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Risser R., Horowitz J. M., and McCubrey J. (1983) Endogenous mouse leukemia viruses. Annu. Rev. Genet. 17, 85–121 10.1146/annurev.ge.17.120183.000505 [PubMed] [CrossRef] [Google Scholar]

73. Gallo R. C., Poiesz B. J., and Ruscetti F. W. (1981) Regulation of human T-cell proliferation: T-cell growth factor and isolation of a new class of type-C retroviruses from human T-cells. Haematol. Blood Transfus. 26, 502–514 10.1007/978-3-642-67984-1_93 [PubMed] [CrossRef] [Google Scholar]

75. Skasko M., Weiss K. K., Reynolds H. M., Jamburuthugoda V., Lee K., and Kim B. (2005) Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases. J. Biol. Chem. 280, 12190–12200 10.1074/jbc.M412859200[PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Parker W. B., White E. L., Shaddix S. C., Ross L. J., Buckheit R. W., Germany J. M., Secrist J. A., Vince R., and., and Shannon W. M. (1991) Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases α, β, and γ by the 5'-triphosphates of carbovir, 3'-azido-3'-deoxythymidine, 2',3'-dideoxyguanosine and 3'-deoxythymidine: a novel RNA template for the evaluation of antiretroviral drugs. J. Biol. Chem. 266, 1754–1762 [PubMed] [Google Scholar]

77. Reardon J. E., and Miller W. H. (1990) Human immunodeficiency virus reverse transcriptase: substrate and inhibitor kinetics with thymidine 5'-triphosphate and 3'-azido-3'-deoxythymidine 5'-triphosphate. J. Biol. Chem. 265, 20302–20307 [PubMed] [Google Scholar]

78. Lenzi G. M., Domaoal R. A., Kim D. H., Schinazi R. F., and Kim B. (2015) Mechanistic and kinetic differences between reverse transcriptases of Vpx coding and non-coding lentiviruses. J. Biol. Chem. 290, 30078–30086 10.1074/jbc.M115.691576[PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Lenzi G. M., Domaoal R. A., Kim D. H., Schinazi R. F., and Kim B. (2014) Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 11, 111 10.1186/s12977-014-0111-y[PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Coggins S. A., Holler J. M., Kimata J. T., Kim D. H., Schinazi R. F., and Kim B. (2019) Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation. Virology 537, 36–44 10.1016/j.virol.2019.08.010[PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Kedar P. S., Abbotts J., Kovács T., Lesiak K., Torrence P., and Wilson S. H. (1990) Mechanism of HIV reverse transcriptase: enzyme-primer interaction as revealed through studies of a dNTP analogue, 3'-azido-dTTP. Biochemistry 29, 3603–3611 10.1021/bi00467a003 [PubMed] [CrossRef] [Google Scholar]

82. Wu J. C., Chernow M., Boehme R. E., Suttmann R. T., McRoberts M. J., Prisbe E. J., Matthews T. R., Marx P. A., Chuang R. Y., and Chen M. S. (1988) Kinetics and inhibition of reverse transcriptase from human and simian immunodeficiency viruses. Antimicrob. Agents Chemother. 32, 1887–1890 10.1128/aac.32.12.1887[PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., and Mitsuya H. (1986) Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. U. S. A. 83, 8333–8337 10.1073/pnas.83.21.8333[PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Huang P., Farquhar D., and Plunkett W. (1990) Selective action of 3'-azido-3'-deoxythymidine 5'-triphosphate on viral reverse transcriptases and human DNA polymerases. J. Biol. Chem. 265, 11914–11918 [PubMed] [Google Scholar]

85. St Clair M. H., Richards C. A., Spector T., Weinhold K. J., Miller W. H., Langlois A. J., and Furman P. A. (1987) 3'-Azido-3'-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob. Agents Chemother. 31, 1972–1977 10.1128/aac.31.12.1972[PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Nakane H., and Ono K. (1990) Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and cellular deoxyribonucleic and ribonucleic acid polymerases. Biochemistry 29, 2841–2845 10.1021/bi00463a029 [PubMed] [CrossRef] [Google Scholar]

87. Debyser Z., Pauwels R., Andries K., Desmyter J., Kukla M., Janssen P. A., and De Clercq E. (1991) An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,1-jk] [1,4]benzodiazepin-2 (1H)-one and -thione derivatives. Proc. Natl. Acad. Sci. U. S. A. 88, 1451–1455 10.1073/pnas.88.4.1451[PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Arion D., Kaushik N., McCormick S., Borkow G., and Parniak M. A. (1998) Phenotypic mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37, 15908–15917 10.1021/bi981200e [PubMed] [CrossRef] [Google Scholar]

89. Gu Z., Fletcher R. S., Arts E. J., Wainberg M. A., and Parniak M. A. (1994) The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2', 3'-dideoxycytidine, 2',3'-dideoxy-3'-thiacytidine, and 2',3'-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro. J. Biol. Chem. 269, 28118–28122 [PubMed] [Google Scholar]

90. Quan Y., Brenner B. G., Marlink R. G., Essex M., Kurimura T., and Wainberg M. A. (2003) Drug resistance profiles of recombinant reverse transcriptases from human immunodeficiency virus type 1 subtypes A/E, B, and C. AIDS Res. Hum. Retroviruses 19, 743–753 10.1089/088922203769232548 [PubMed] [CrossRef] [Google Scholar]

91. Michailidis E., Marchand B., Kodama E. N., Singh K., Matsuoka M., Kirby K. A., Ryan E. M., Sawani A. M., Nagy E., Ashida N., Mitsuya H., Parniak M. A., and Sarafianos S. G. (2009) Mechanism of inhibition of HIV-1 reverse transcriptase by 4'-ethynyl-2-fluoro-2'-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J. Biol. Chem. 284, 35681–35691 10.1074/jbc.M109.036616[PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Hart G. J., Orr D. C., Penn C. R., Figueiredo H. T., Gray N. M., Boehme R. E., and Cameron J. M. (1992) Effects of (−)-2'-deoxy-3'-thiacytidine (3TC) 5'-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases α, β, and γ. Antimicrob. Agents Chemother. 36, 1688–1694 10.1128/aac.36.8.1688[PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Cihlar T., Ray A. S., Boojamra C. G., Zhang L., Hui H., Laflamme G., Vela J. E., Grant D., Chen J., Myrick F., White K. L., Gao Y., Lin K. Y., Douglas J. L., Parkin N. T., et al. (2008) Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob. Agents Chemother. 52, 655–665 10.1128/AAC.01215-07[PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Nakata H., Amano M., Koh Y., Kodama E., Yang G., Bailey C. M., Kohgo S., Hayakawa H., Matsuoka M., Anderson K. S., Cheng Y. C., and Mitsuya H. (2007) Activity against human immunodeficiency virus type 1, intracellular metabolism, and effects on human DNA polymerases of 4'-ethynyl-2-fluoro-2'-deoxyadenosine. Antimicrob. Agents Chemother. 51, 2701–2708 10.1128/AAC.00277-07[PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Hachiya A., Kodama E. N., Schuckmann M. M., Kirby K. A., Michailidis E., Sakagami Y., Oka S., Singh K., and Sarafianos S. G. (2011) K70Q adds high-level tenofovir resistance to “Q151M complex” HIV reverse transcriptase through the enhanced discrimination mechanism. PLoS ONE 6, e16242 10.1371/journal.pone.0016242[PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Tu X., Das K., Han Q., Bauman J. D., Clark A. D. Jr., Hou X., Frenkel Y. V., Gaffney B. L., Jones R. A., Boyer P. L., Hughes S. H., Sarafianos S. G., and Arnold E. (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat. Struct. Mol. Biol. 17, 1202–1209 10.1038/nsmb.1908[PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Meyer P. R., Matsuura S. E., So A. G., and Scott W. A. (1998) Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc. Natl. Acad. Sci. U. S. A. 95, 13471–13476 10.1073/pnas.95.23.13471[PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Njenda D. T., Aralaguppe S. G., Singh K., Rao R., Sönnerborg A., Sarafianos S. G., and Neogi U. (2018) Antiretroviral potency of 4'-ethnyl-2'-fluoro-2'-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. J. Antimicrob. Chemother. 73, 2721–2728 10.1093/jac/dky256[PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Amie S. M., Noble E., and Kim B. (2013) Intracellular nucleotide levels and the control of retroviral infections. Virology 436, 247–254 10.1016/j.virol.2012.11.010[PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Aquaro S., Perno C. F., Balestra E., Balzarini J., Cenci A., Francesconi M., Panti S., Serra F., Villani N., and Caliò R. (1997) Inhibition of replication of HIV in primary monocyte/macrophages by different antiviral drugs and comparative efficacy in lymphocytes. J. Leukoc. Biol. 62, 138–143 10.1002/jlb.62.1.138 [PubMed] [CrossRef] [Google Scholar]

101. Nick McElhinny S. A., Watts B. E., Kumar D., Watt D. L., Lundström E. B., Burgers P. M., Johansson E., Chabes A., and Kunkel T. A. (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. U. S. A. 107, 4949–4954 10.1073/pnas.0914857107[PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Buckstein M. H., He J., and Rubin H. (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 190, 718–726 10.1128/JB.01020-07[PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Zhong W., Uss A. S., Ferrari E., Lau J. Y., and Hong Z. (2000) De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J. Virol. 74, 2017–2022 10.1128/jvi.74.4.2017-2022.2000[PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Nomaguchi M., Ackermann M., Yon C., You S., Padmanabhan R., and Padmanbhan R. (2003) De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters. J. Virol. 77, 8831–8842 10.1128/jvi.77.16.8831-8842.2003[PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Tchesnokov E. P., Raeisimakiani P., Ngure M., Marchant D., and Götte M. (2018) Recombinant RNA-dependent RNA polymerase complex of Ebola virus. Sci. Rep. 8, 3970 10.1038/s41598-018-22328-3[PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Gordon C. J., Tchesnokov E. P., Woolner E., Perry J. K., Feng J. Y., Porter D. P., and Götte M. (2020) Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295, 6785–6797 10.1074/jbc.RA120.013679[PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Stridh S. (1983) Determination of ribonucleoside triphosphate pools in influenza A virus-infected MDCK cells. Arch. Virol. 77, 223–229 10.1007/BF01309269 [PubMed] [CrossRef] [Google Scholar]

108. Haugen S. P., Ross W., and Gourse R. L. (2008) Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 6, 507–519 10.1038/nrmicro1912[PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Browning D. F., and Busby S. J. (2004) The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2, 57–65 10.1038/nrmicro787 [PubMed] [CrossRef] [Google Scholar]

110. Saecker R. M., Record M. T. Jr., and Dehaseth P. L. (2011) Mechanism of bacterial transcription initiation: RNA polymerase–promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 10.1016/j.jmb.2011.01.018[PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Osumi-Davis P. A., Sreerama N., Volkin D. B., Middaugh C. R., Woody R. W., and Woody A. Y. (1994) Bacteriophage T7 RNA polymerase and its active-site mutants: kinetic, spectroscopic and calorimetric characterization. J. Mol. Biol. 237, 5–19 10.1006/jmbi.1994.1205 [PubMed] [CrossRef] [Google Scholar]

112. Bochner B. R., and Ames B. N. (1982) Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J. Biol. Chem. 257, 9759–9769 [PubMed] [Google Scholar]

113. Gardner L. P., Mookhtiar K. A., and Coleman J. E. (1997) Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase. Biochemistry 36, 2908–2918 10.1021/bi962397i [PubMed] [CrossRef] [Google Scholar]

114. Ranjith-Kumar C. T., Gutshall L., Kim M. J., Sarisky R. T., and Kao C. C. (2002) Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J. Virol. 76, 12526–12536 10.1128/jvi.76.24.12526-12536.2002[PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Ackermann M., and Padmanabhan R. (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J. Biol. Chem. 276, 39926–39937 10.1074/jbc.M104248200 [PubMed] [CrossRef] [Google Scholar]

116. Jácome R., Becerra A., Ponce de León S., and Lazcano A. (2015) Structural analysis of monomeric RNA-dependent polymerases: evolutionary and therapeutic implications. PLoS ONE 10, e0139001 10.1371/journal.pone.0139001[PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Ferrari E., Wright-Minogue J., Fang J. W., Baroudy B. M., Lau J. Y., and Hong Z. (1999) Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli. J. Virol. 73, 1649–1654 10.1128/JVI.73.2.1649-1654.1999[PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Bartenschlager R., Ahlborn-Laake L., Yasargil K., Mous J., and Jacobsen H. (1995) Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 proteinase. J. Virol. 69, 198–205 10.1128/JVI.69.1.198-205.1995[PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Luo G., Hamatake R. K., Mathis D. M., Racela J., Rigat K. L., Lemm J., and Colonno R. J. (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J. Virol. 74, 851–863 10.1128/jvi.74.2.851-863.2000[PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Kao C. C., Del Vecchio A. M., and Zhong W. (1999) De novo initiation of RNA synthesis by a recombinant flaviviridae RNA-dependent RNA polymerase. Virology 253, 1–7 10.1006/viro.1998.9517 [PubMed] [CrossRef] [Google Scholar]

121. Ranjith-Kumar C. T., Sarisky R. T., Gutshall L., Thomson M., and Kao C. C. (2004) De novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities. J. Virol. 78, 12207–12217 10.1128/JVI.78.22.12207-12217.2004[PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Filomatori C. V., Lodeiro M. F., Alvarez D. E., Samsa M. M., Pietrasanta L., and Gamarnik A. V. (2006) A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 20, 2238–2249 10.1101/gad.1444206[PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Selisko B., Potisopon S., Agred R., Priet S., Varlet I., Thillier Y., Sallamand C., Debart F., Vasseur J. J., and Canard B. (2012) Molecular basis for nucleotide conservation at the ends of the dengue virus genome. PLoS Pathog. 8, e1002912 10.1371/journal.ppat.1002912[PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Butcher S. J., Grimes J. M., Makeyev E. V., Bamford D. H., and Stuart D. I. (2001) A mechanism for initiating RNA-dependent RNA polymerization. Nature 410, 235–240 10.1038/35065653 [PubMed] [CrossRef] [Google Scholar]

125. Egloff M. P., Decroly E., Malet H., Selisko B., Benarroch D., Ferron F., and Canard B. (2007) Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J. Mol. Biol. 372, 723–736 10.1016/j.jmb.2007.07.005 [PubMed] [CrossRef] [Google Scholar]

126. Bressanelli S., Tomei L., Rey F. A., and De Francesco R. (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76, 3482–3492 10.1128/jvi.76.7.3482-3492.2002[PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Yap T. L., Xu T., Chen Y. L., Malet H., Egloff M. P., Canard B., Vasudevan S. G., and Lescar J. (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol. 81, 4753–4765 10.1128/JVI.02283-06[PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Lohmann V. (2013) Hepatitis C virus RNA replication. Curr. Top. Microbiol. Immunol. 369, 167–198 10.1007/978-3-642-27340-7_7[PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Mosley R. T., Edwards T. E., Murakami E., Lam A. M., Grice R. L., Du J., Sofia M. J., Furman P. A., and Otto M. J. (2012) Structure of hepatitis C virus polymerase in complex with primer-template RNA. J. Virol. 86, 6503–6511 10.1128/JVI.00386-12[PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Harrus D., Ahmed-El-Sayed N., Simister P. C., Miller S., Triconnet M., Hagedorn C. H., Mahias K., Rey F. A., Astier-Gin T., and Bressanelli S. (2010) Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J. Biol. Chem. 285, 32906–32918 10.1074/jbc.M110.151316[PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Lim S. P., Noble C. G., Seh C. C., Soh T. S., El Sahili A., Chan G. K., Lescar J., Arora R., Benson T., Nilar S., Manjunatha U., Wan K. F., Dong H., Xie X., Shi P. Y., et al. (2016) Potent allosteric Dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. PLoS Pathog. 12, e1005737 10.1371/journal.ppat.1005737[PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Sesmero E., and Thorpe I. F. (2015) Using the hepatitis C virus RNA-dependent RNA polymerase as a model to understand viral polymerase structure, function and dynamics. Viruses 7, 3974–3994 10.3390/v7072808[PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Bressanelli S., Tomei L., Roussel A., Incitti I., Vitale R. L., Mathieu M., De Francesco R., and Rey F. A. (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. U. S. A. 96, 13034–13039 10.1073/pnas.96.23.13034[PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Gao G., Orlova M., Georgiadis M. M., Hendrickson W. A., and Goff S. P. (1997) Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc. Natl. Acad. Sci. U. S. A. 94, 407–411 10.1073/pnas.94.2.407[PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Selisko B., Papageorgiou N., Ferron F., and Canard B. (2018) Structural and functional basis of the fidelity of nucleotide selection by flavivirus RNA-dependent RNA polymerases. Viruses 10, 59 10.3390/v10020059[PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Campagnola G., McDonald S., Beaucourt S., Vignuzzi M., and Peersen O. B. (2015) Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. J. Virol. 89, 275–286 10.1128/JVI.01574-14[PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Vreede F. T., Jung T. E., and Brownlee G. G. (2004) Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J. Virol. 78, 9568–9572 10.1128/JVI.78.17.9568-9572.2004[PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Kao C. C., and Sun J. H. (1996) Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J. Virol. 70, 6826–6830 10.1128/JVI.70.10.6826-6830.1996[PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Testa D., and Banerjee A. K. (1979) Initiation of RNA synthesis in vitro by vesicular stomatitis virus: role of ATP. J. Biol. Chem. 254, 2053–2058 [PubMed] [Google Scholar]

140. Vreede F. T., Gifford H., and Brownlee G. G. (2008) Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J. Virol. 82, 6902–6910 10.1128/JVI.00627-08[PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Zhang S., Weng L., Geng L., Wang J., Zhou J., Deubel V., Buchy P., and Toyoda T. (2010) Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem. Biophys. Res. Commun. 391, 570–574 10.1016/j.bbrc.2009.11.100 [PubMed] [CrossRef] [Google Scholar]

142. Tchesnokov E. P., Feng J. Y., Porter D. P., and Götte M. (2019) Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11, 326 10.3390/v11040326[PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Gordon C. J., Tchesnokov E. P., Feng J. Y., Porter D. P., and Götte M. (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 295, 4773–4779 10.1074/jbc.AC120.013056[PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Agostini M. L., Andres E. L., Sims A. C., Graham R. L., Sheahan T. P., Lu X., Smith E. C., Case J. B., Feng J. Y., Jordan R., Ray A. S., Cihlar T., Siegel D., Mackman R. L., Clarke M. O., et al. (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9, e00221–18 10.1128/mBio.00221-18[PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Mumtaz N., Jimmerson L. C., Bushman L. R., Kiser J. J., Aron G., Reusken C., Koopmans M. P. G., and van Kampen J. J. A. (2017) Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antiviral Res. 146, 161–163 10.1016/j.antiviral.2017.09.004 [PubMed] [CrossRef] [Google Scholar]

146. Achuthan V., Singh K., and DeStefano J. J. (2017) Physiological Mg2+ conditions significantly alter the inhibition of HIV-1 and HIV-2 reverse transcriptases by nucleoside and non-nucleoside inhibitors in vitro