Giải hệ phương trình Đại số tuyến tính ta không gặp trường hợp nào sau đây


Ngoài khả năng xử lý bảng tính, Excel còn có nhiều khả năng khác mà có thể bạn chưa khám phá hết. Bài viết này giới thiệu cách dùng Excel để giải hệ phương trình đại số tuyến tính [HPTTT] - dạng bài toán thường gặp trong thực tế, khá phức tạp vì có nhiều ẩn. Để giải HPTTT, ở đây dùng hai phương pháp: ma trận và Gauss Seidel.

Phương pháp ma trận

Sử dụng phương pháp ma trận để giải HPTTT là đơn giản nhất khi sử dụng Excel. HPTTT có dạng:

       Ax=b

trong đó A là ma trận hệ số, x là vectơ biến số và b là vectơ kết quả.

HPTTT được biến đổi thành:

       x=A-1b

Xét hệ ba phương trình ba ẩn sau:

-8x1  + x2   + 2x3  =   0

5x1   + 7x2   - 3x3  = 10     [*]

2x1   + x2    - 2x3  =  -2

Hệ ba phương trình này có thể viết dưới dạng ma trận sau:

  -8   1   2      x1        0

Quảng cáo

   5   7   3      x2   = 10

   2   1   2      x3       -2

Ta dễ dàng tìm được nghiệm của HPTTT bằng cách dùng hàm MINVERSE [tính ma trận nghịch đảo] và MMULT [tính tích ma trận] trong Excel. Sau đây là các bước giải HPTTT:

• Bước 1: nhập ma trận A vào các ô A6:C8

A6  -8        B6  1         C6  2

A7  5        B7  7         C7  -3

A8  2        B8  1         C8  -2

• Bước 2: nhập vectơ kết quả vào các ô E6:E8

E6  0         E7  10       E8  -2

• Bước 3: chọn các ô A11:C13, gõ công thức: =MINVERSE[A6:C8] và nhấn Ctrl+Shift+Enter để chèn công thức này vào cả vùng được lựa chọn ta thu được ma trận nghịch đảo của ma trận A.

• Bước 4: chọn các ô E11:E13, gõ công thức: =MMULT[A11:C13,E6:E8] và nhấn Ctrl+Shift+Enter để chèn công thức này vào cả vùng được lựa chọn ta thu được nghiệm của hệ ba phương trình trên trong các cột E11:E13 [xem hình 1]

Nghiệm của hệ phương trình là:

Quảng cáo

x1=1     x2=2     x3=3

Phương Pháp lặp Gauss-Seidel

Bản chất của  phép lặp Gauss là nghiệm ở bước lặp i được dùng để tính cho bước lặp i+1 còn bản chất của phép lặp Gauss-Seidel là kết quả tính toán ẩn xk được đưa ngay vào tính toán ẩn xk+1 trong cùng một bước lặp i, đây là một bước cải tiến đáng kể phương pháp Gauss. Ta xem xét việc sử dụng Excel để giải HPTTT theo phương pháp Gauss-Seidel.

Biến đổi hệ phương trình trên ta có:

Sau đây là các bước giải HPTTT bằng phương pháp lặp Gauss-Seidel trong Excel:

• Bước 1: chọn Tools - Options - Calculation tab và thay đổi Calculation từ Automatic thành Manual, bỏ chọn Recalculate Before Save, chọn Iterations và đặt Maximum Iteration bằng 1, Maximum change bằng 0,001[xem hình 2].

• Bước 2: trong ô B3 nhập True, trong các ô A8:A10 nhập giá trị 0 [giá trị khởi tạo ban đầu].

• Bước 3: trong ô B8 nhập công thức   =[C9+2*C10]/8; trong ô B9 nhập công thức   =[10-5*C8+3*C10]/7; trong ô B10 nhập công thức =[2+2*C8+C9]/2

• Bước 4: trong ô C8 nhập công thức   =IF[B3=TRUE,A8,B8]; trong ô C9 nhập công thức   =IF[B3=TRUE,A9,B9]; trong ô C10 nhập công thức =IF[B3=TRUE, A10,B10]

Ta thấy các công thức trong cột B tính theo các giá trị trong cột C, các giá trị này lại nhận kết quả tính toán từ cột B, như vậy từ công thức thứ hai trong cột B trở đi có thể sử dụng các giá trị mới tính ở các công thức trên.

• Bước 5: định dạng các ô B8:C10 là Number với ba số thập phân sau dấu phẩy

• Bước 6: khi ô B3 ở trạng thái True nhấn F9 để tính với giá trị khởi tạo ban đầu, sau đó thay đổi trạng thái ô B3 thành False và nhấn F9 để lặp lại quá trình tính toán với các giá trị trong cột C, tiếp tục nhấn F9 cho đến khi các giá trị hội tụ ta nhận được nghiệm của hệ ba phương trình trên trong các ô C8:C10 [xem hình 3].

Trong trường hợp quá nhiều bước lặp nghĩa là phải nhấn nhiều lần F9 [trong ví dụ trên phải lặp 10 bước] thì ta có thể tăng số bước lặp trong một lần nhấn F9 bằng cách chọn Tool s- Options  và đặt Maximum Iteration lớn hơn 1.

Nhận Xét

Phương pháp nghịch đảo ma trận đơn giản nhưng chỉ phù hợp với hệ phương trình có số ẩn không quá lớn [dưới 60 ẩn] với số ẩn lớn hơn nên dùng phương pháp Gauss-Seidel. Ngoài ra còn nhiều phương pháp khác nhưng trong phạm vi bài này không đề cập đến, mong nhận được sự đóng góp ý kiến của các bạn.

Vũ Lan Hương
25F - Cát Linh - Hà Nội

Trong toán học [cụ thể là trong đại số tuyến tính], một hệ phương trình đại số tuyến tính hay đơn giản là hệ phương trình tuyến tính là một tập hợp các phương trình tuyến tính với cùng những biến số. Ví dụ:

Một phương pháp giải cho hệ trên là phương pháp thế. Trước hết, biến đổi phương trình đầu tiên để được phương trình tính ẩn x {\displaystyle x} theo y {\displaystyle y} :

x = 3 − 3 2 y . {\displaystyle x=3-{\frac {3}{2}}y.}

Sau đó thế hệ thức này vào phương trình dưới:

4 [ 3 − 3 2 y ] + 9 y = 15. {\displaystyle 4\left[3-{\frac {3}{2}}y\right]+9y=15.}

Ta được một phương trình bật nhất theo y {\displaystyle y} . Giải ra, ta được y = 1 {\displaystyle y=1} , và tính lại x {\displaystyle x} được x = 3 / 2 {\displaystyle x=3/2} .

Hình thức tổng quátSửa đổi

Hệ phương trình trên có thể được viết theo dạng phương trình ma trận:

Ax=b

Với A là ma trận chứa các hệ số ai, j [ai, j là phần tử ở hàng thứ i, cột thứ j của A]; x là vector chứa các biến xj; b là vector chứa các hằng số bi. Tức là:

[ a 1 , 1 a 1 , 2 ⋯ a 1 , k a 2 , 1 a 2 , 2 ⋯ a 2 , k ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , k ] [ x 1 x 2 ⋮ x k ] = [ b 1 b 2 ⋮ b n ] {\displaystyle {\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}\\\vdots &\vdots &\ddots &\vdots \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}\end{bmatrix}}{\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{k}\end{bmatrix}}={\begin{bmatrix}b_{1}\\b_{2}\\\vdots \\b_{n}\end{bmatrix}}}

Nếu các biến số của hệ phương trình tuyến tính nằm trong các trường đại số vô hạn [ví dụ số thực hay số phức], thì chỉ có ba trường hợp xảy ra:

  • hệ không có nghiệm [vô nghiệm]
  • hệ có duy nhất một nghiệm
  • hệ có vô số nghiệm

Hệ phương trình tuyến tính có thể thấy trong nhiều ứng dụng trong khoa học.

Điều kiện có nghiệm trong trường hợp tổng quátSửa đổi

Trong trường hợp tổng quát, ta xét các ma trận hệ số A và ma trận hệ số bổ sung thêm cột các số hạng ở vế phải A' .

A = [ a 1 , 1 a 1 , 2 ⋯ a 1 , k a 2 , 1 a 2 , 2 ⋯ a 2 , k ⋅ ⋅ ⋯ ⋅ a n , 1 a n , 2 ⋯ a n , k ] {\displaystyle A={\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}\\\cdot &\cdot &\cdots &\cdot \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}\end{bmatrix}}} ; A ′ = [ a 1 , 1 a 1 , 2 ⋯ a 1 , k b 1 a 2 , 1 a 2 , 2 ⋯ a 2 , k b 2 ⋅ ⋅ ⋅ ⋅ ⋅ a n , 1 a n , 2 ⋯ a n , k b n ] {\displaystyle A'={\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,k}&b_{1}\\a_{2,1}&a_{2,2}&\cdots &a_{2,k}&b_{2}\\\cdot &\cdot &\cdot &\cdot &\cdot \\a_{n,1}&a_{n,2}&\cdots &a_{n,k}&b_{n}\end{bmatrix}}}

Khi đó hệ có nghiệm khi và chỉ khi hạng của hai ma trận này bằng nhau.

r a n k [ A ] = r a n k [ A ′ ] = r {\displaystyle rank[A]=rank[A']=r} .

Chi tiết hơn ta có:

  1. Nếu r = r a n [ A ] < r a n [ A ′ ] {\displaystyle r=ran[A]

Chủ Đề