Alzheimers associations global science initiatives là gì năm 2024

In October 2023, an important milestone was reached as worldwide experts gathered for the Lausanne X Workshop. Over the past decade, CEOi and the Lausanne Dialogues have driven significant progress, establishing themselves as the premier global platforms for bringing people together across sectors, countries, and specialties, and successfully raising the alarm about the need for a global ecosystem and action plan.

Check out our meeting summary here to learn about key takeaways from Lausanne X.

Alzheimers associations global science initiatives là gì năm 2024

The Global CEO Initiative on Alzheimer’s Disease (CEOi), founded in 2013, is an organization of private-sector leaders who have joined together to provide business leadership in the fight against Alzheimer’s. The CEOi believes that, during this era of aging populations, it will take visionary, coordinated, goal-oriented leadership of public and private leaders working together to solve our greatest challenges. It is convened by UsAgainstAlzheimer’s.

Alzheimers associations global science initiatives là gì năm 2024
Alzheimers associations global science initiatives là gì năm 2024

Our members and collaborators

What is CEOi, and how do we address unmet needs in Alzheimer's care?

CEOi Executive Director Drew Holzapfel featured on Roche’s Alzheimer’s Disease Taxi discussing the biggest challenges to innovative treatments reaching patients and how cross-sector collaboration can address the most urgent, unmet needs in Alzheimer’s disease.

Alzheimers associations global science initiatives là gì năm 2024

Lessons and Opportunities for the Alzheimer’s Community

Reflections on COVID-19

COVID-19 efforts provide powerful insights that can guide cross-sector responses to the dementia crisis. The Global CEO Initiative on Alzheimer’s Disease, Alzheimer’s Disease International and Hoffmann-La Roche wrote this report to stimulate discussion about how our world can apply these lessons to address Alzheimer’s disease: the growing pandemic.

A new podcast on stopping Alzheimer’s: A growing pandemic

Download CEOi’s new podcast series on how to end Alzheimer’s disease – a growing pandemic and one of the world’s most serious unmet health needs. As explained by the experts in this podcast, transparency, smart policy, and close collaboration can help stop the devastation Alzheimer’s unleashes on patients, families, health systems and entire economies.

Alzheimers associations global science initiatives là gì năm 2024

In this episode, current and former regulatory officials take a page from the COVID-19 playbook, highlighting the vital need for transparent communication and cooperation across all stakeholders. The opportunity when done right?: The advancement of incremental innovations that can eventually transform a devastating disease into a manageable condition.

Editorial: a turning point in Alzheimer’s research: harmonized research strategies and novel investments in public health infrastructure are reenergizing the field, and rekindling hope for those affected by Alzheimer’s and related dementias. J Prev Alzheimers Dis. 2019;6:214–216. 10.14283/jpad.2019.36. [PubMed] [CrossRef] [Google Scholar]

2. NHMRC National Institute for Dementia Research. Australia’s Boosting Dementia Research Initiative: Report on early outcomes. n.d.

3. Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?. Neurology. 2007;69:871–877. 10.1212/01.wnl.0000269790.05105.16. [PubMed] [CrossRef] [Google Scholar]

4. Elias A, Woodward M, Rowe CC. Management impact of FDG-PET in dementia: results from a tertiary center memory clinic. J Alzheimers Dis JAD. 2014;42:885–892. 10.3233/JAD-132729. [PubMed] [CrossRef] [Google Scholar]

5. Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007;68:1718–1725. 10.1212/01.wnl.0000261919.22630.ea. [PubMed] [CrossRef] [Google Scholar]

6. Rowe CC, Bourgeat P, Ellis KA, et al. Predicting Alzheimer disease with β-amyloid imaging: results from the Australian imaging, biomarkers, and lifestyle study of ageing. Ann Neurol. 2013;74:905–913. 10.1002/ana.24040. [PubMed] [CrossRef] [Google Scholar]

7. Amadoru S, Doré V, McLean CA, et al. Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer’s disease. Alzheimers Res Ther. 2020;12:22. 10.1186/s13195-020-00587-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–629. 10.1016/S1474-4422(14)70090-0. [PubMed] [CrossRef] [Google Scholar]

9. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2011;7:263–269. 10.1016/j.jalz.2011.03.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2018;14:535–562. 10.1016/j.jalz.2018.02.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebocontrolled, ascending-dose study. Lancet Neurol. 2010;9:363–372. 10.1016/S1474-4422(10)70043-0. [PubMed] [CrossRef] [Google Scholar]

12. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–56. 10.1038/nature19323. [PubMed] [CrossRef] [Google Scholar]

13. Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep. 2018;8:1–16. 10.1038/s41598-018-24501-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Burnham SC, Laws SM, Budgeon CA, et al. Impact of APOE-ε4 carriage on the onset and rates of neocortical Aβ-amyloid deposition. Neurobiol Aging. 2020;95:46–55. 10.1016/j.neurobiolaging.2020.06.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–367. 10.1016/S1474-4422(13)70044-9. [PubMed] [CrossRef] [Google Scholar]

16. Brown BM, Rainey-Smith SR, Dore V, et al. Self-reported physical activity is associated with tau burden measured by positron emission tomography. J Alzheimers Dis JAD. 2018;63:1299–1305. 10.3233/JAD-170998. [PubMed] [CrossRef] [Google Scholar]

17. Baldacci F, Mazzucchi S, Della Vecchia A, et al. The path to biomarkerbased diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn. 2020;20:421–441. 10.1080/14737159.2020.1731306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554:249–254. 10.1038/nature25456. [PubMed] [CrossRef] [Google Scholar]

19. Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93:e1647–59. 10.1212/WNL.0000000000008081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Mielke MM, Hagen CE, Xu J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement J Alzheimers Assoc. 2018;14:989–997. 10.1016/j.jalz.2018.02.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26:379–386. 10.1038/s41591-020-0755-1. [PubMed] [CrossRef] [Google Scholar]

22. Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–433. 10.1016/S1474-4422(20)30071-5. [PubMed] [CrossRef] [Google Scholar]

23. Lantero Rodriguez J, Karikari TK, Suárez-Calvet M, et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol (Berl). 2020;140:267–278. 10.1007/s00401-020-02195-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Barron AM, Tokunaga M, Zhang M-R, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221. 10.1186/s12974-016-0700-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Terada T, Obi T, Bunai T, et al. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology. 2020;94:e1592–604. 10.1212/WNL.0000000000009249. [PubMed] [CrossRef] [Google Scholar]

26. Barron AM, Ji B, Fujinaga M, et al. In vivo positron emission tomography imaging of mitochondrial abnormalities in a mouse model of tauopathy. Neurobiol Aging. 2020;94:140–148. 10.1016/j.neurobiolaging.2020.05.003. [PubMed] [CrossRef] [Google Scholar]

27. Abner EL, Elahi FM, Jicha GA, et al. Endothelial-derived plasma exosome proteins in Alzheimer’s disease angiopathy. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34(4):5967–5974. 10.1096/fj.202000034R. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Elahi FM, Casaletto KB, Altendahl M, et al. Liquid Biopsy” of white matter hyperintensity in functionally normal elders. Front Aging Neurosci. 2018;10:343. 10.3389/fnagi.2018.00343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Sur S, Lin Z, Li Y, et al. Association of cerebrovascular reactivity and Alzheimer pathologic markers with cognitive performance. Neurology. 2020;95:e962–72. 10.1212/WNL.0000000000010133. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage. 2011;54(suppl):S204–217. 10.1016/j.neuroimage.2010.06.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2(16), e93621. 10.1172/jci.insight.93621. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Shi H, Koronyo Y, Rentsendorj A, Regis GC, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathol (Berl). 2020;139:813–836. 10.1007/s00401-020-02134-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019;10:4227. 10.1038/s41467-019-12242-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. More SS, Beach JM, McClelland C, Mokhtarzadeh A, Vince R. In vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem Neurosci. 2019;10:4492–4501. 10.1021/acschemneuro.9b00331. [PubMed] [CrossRef] [Google Scholar]

35. Dumitrascu OM, Lyden PD, Torbati T, et al. Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. Alzheimers Dement Diagn Assess Dis Monit. 2020;12(1), e12109. 10.1002/dad2.12109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 2020;17(1):103–111. 10.1002/alz.12179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Twohig D, Nielsen HM. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener. 2019;14:23. 10.1186/s13024-019-0320-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Shahnawaz M, Tokuda T, Waragai M, et al. Development of a biochemical diagnosis of parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 2017;74:163–172. 10.1001/jamaneurol.2016.4547. [PubMed] [CrossRef] [Google Scholar]

39. Daniele S, Pietrobono D, Fusi J, et al. α-synuclein aggregates with β-amyloid or tau in human red blood cells: correlation with antioxidant capability and physical exercise in human healthy subjects. Mol Neurobiol. 2018;55:2653–2675. 10.1007/s12035-017-0523-5. [PubMed] [CrossRef] [Google Scholar]

40. Baldacci F, Daniele S, Piccarducci R, et al. Potential diagnostic value of red blood cells α-synuclein heteroaggregates in Alzheimer’s disease. Mol Neurobiol. 2019;56:6451–6459. 10.1007/s12035-019-1531-4. [PubMed] [CrossRef] [Google Scholar]

41. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci Off J Soc Neurosci. 2007;27:9115–9129. 10.1523/JNEUROSCI.2361-07.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118:658–667. 10.1111/j.1471-4159.2011.07337.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415. 10.1038/s41582-018-0013-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Krishnaswamy S, Lin Y, Rajamohamedsait WJ, Rajamohamedsait HB, Krishnamurthy P, Sigurdsson EM. Antibody-derived in vivo imaging of tau pathology. J Neurosci Off J Soc Neurosci. 2014;34:16835–16850. 10.1523/JNEUROSCI.2755-14.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Krishnaswamy S, Huang H-W, Marchal IS, Ryoo HD, Sigurdsson EM. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020;137:104770. 10.1016/j.nbd.2020.104770. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology. 2020;175:108104. 10.1016/j.neuropharm.2020.108104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. McQuade A, Blurton-Jones M. Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol. 2019;431:1805–1817. 10.1016/j.jmb.2019.01.045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Fu W-Y, Wang X, Ip NY. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem Neurosci. 2019;10:872–879. 10.1021/acschemneuro.8b00402. [PubMed] [CrossRef] [Google Scholar]

49. De Sousa Rodrigues ME, Houser MC, Walker DI, et al. Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer’s disease associated with obesity, metabolic syndrome, and type 2 diabetes. Alzheimers Res Ther. 2019;12:1. 10.1186/s13195-019-0546-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Sama DM, Mohmmad Abdul H, Furman JL, et al. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations andCa2+ dys-regulation in aged rats. PloS One. 2012;7:e38170. 10.1371/journal.pone.0038170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. MacPherson KP, Sompol P, Kannarkat GT, et al. Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol Dis. 2017;102:81–95. 10.1016/j.nbd.2017.02.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. McAlpine FE, Lee J-K, Harms AS, et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis. 2009;34:163–177. 10.1016/j.nbd.2009.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Cavanagh C, Tse YC, Nguyen H-B, et al. Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol Aging. 2016;47:41–49. 10.1016/j.neurobiolaging.2016.07.009. [PubMed] [CrossRef] [Google Scholar]

54. Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14. 10.1016/j.addr.2019.11.009. [PubMed] [CrossRef] [Google Scholar]

55. Leinenga G, Langton C, Nisbet R, Götz J. Ultrasound treatment of neurological diseases–current and emerging applications. Nat Rev Neurol. 2016;12:161–174. 10.1038/nrneurol.2016.13. [PubMed] [CrossRef] [Google Scholar]

56. Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 2015;7:278ra33. 10.1126/scitranslmed.aaa2512. [PubMed] [CrossRef] [Google Scholar]

57. Leinenga G, Götz J. Safety and efficacy of scanning ultrasound treatment of aged APP23 mice. Front Neurosci. 2018;12:55. 10.3389/fnins.2018.00055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Nisbet RM, Van der Jeugd A, Leinenga G, Evans HT, Janowicz PW, Götz J. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain J Neurol. 2017;140:1220–1230. 10.1093/brain/awx052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Pandit R, Leinenga G, Götz J. Repeated ultrasound treatment of tau transgenic mice clears neuronal tau by autophagy and improves behavioral functions. Theranostics. 2019;9:3754–3767. 10.7150/thno.34388. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Pelekanos M, Leinenga G, Odabaee M, et al. Establishing sheep as an experimental species to validate ultrasound-mediated blood-brain barrier opening for potential therapeutic interventions. Theranostics. 2018;8:2583–2602. 10.7150/thno.22852. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Jefferson AL. Vascular risk factors and midlife cognition: rethinking the exposure window. Circulation. 2014;129:1548–1550. 10.1161/CIRCULATIONAHA.114.008906. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Yaffe K, Vittinghoff E, Pletcher MJ, et al. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation. 2014;129:1560–1567. 10.1161/CIRCULATIONAHA.113.004798. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Sachdev PS, Lo JW, Crawford JD, et al. STROKOG (stroke and cognition consortium): an international consortium to examine the epidemiology, diagnosis, and treatment of neurocognitive disorders in relation to cerebrovascular disease. Alzheimers Dement Diagn Assess Dis Monit. 2017;7:11–23. 10.1016/j.dadm.2016.10.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Lo JW, Crawford JD, Desmond DW, et al. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology. 2019;93:e2257–71. 10.1212/WNL.0000000000008612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Nichols E, Szoeke CEI, Vollset SE, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. LancetNeurol. 2019;18:88–106. 10.1016/S1474-4422(18)30403-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Rahman A, Jackson H, Hristov H, et al. Sex and gender driven modifiers of Alzheimer’s: the role for estrogenic control across age, race, medical, and lifestyle risks. Front Aging Neurosci. 2019;11:315. 10.3389/fnagi.2019.00315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention what a difference a decade makes. Circulation. 2011;124:2145–2154. 10.1161/CIRCULATIONAHA.110.968792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Snyder HM, Asthana S, Bain L, et al. Sex biology contributions to vulnerability to Alzheimer’s disease: a think tank convened by the Women’s Alzheimer’s Research Initiative. Alzheimers Dement J Alzheimers Assoc. 2016;12:1186–1196. 10.1016/j.jalz.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Taylor CM, Pritschet L, Yu S, Jacobs EG. Applying a women’s health lens to the study of the aging brain. Front Hum Neurosci. 2019;13:224. 10.3389/fnhum.2019.00224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Szoeke C, Dang C, Lehert P, et al. Unhealthy habits persist: the ongoing presence of modifiable risk factors for disease in women. PloS One. 2017;12:e0173603. 10.1371/journal.pone.0173603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Szoeke CEI, Robertson JS, Rowe CC, et al. The women’s healthy ageing project: fertile ground for investigation of healthy participants “at risk” for dementia. Int Rev Psychiatry Abingdon Engl. 2013;25:726–737. 10.3109/09540261.2013.873394. [PubMed] [CrossRef] [Google Scholar]

72. Szoeke C, Goodwill AM, Gorelik A, et al. Apolipoprotein E4 mediates the association between midlife dyslipidemia and cerebral amyloid in aging women. J Alzheimers Dis JAD. 2019;68:105–114. 10.3233/JAD-180815. [PubMed] [CrossRef] [Google Scholar]

73. Altmann A, Tian L, Henderson VW, Greicius MD. Alzheimer’s disease neuroimaging initiative investigators. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–573. 10.1002/ana.24135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19:326–335. 10.1016/S1474-4422(19)30435-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Porter T, Burnham SC, Savage G, et al. A polygenic risk score derived from episodic memory weighted genetic variants is associated with cognitive decline in preclinical Alzheimer’s disease. Front Aging Neurosci. 2018;10:423. 10.3389/fnagi.2018.00423. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Porter T, Burnham SC, Milicic L, et al. Utility of an Alzheimer’s disease risk-weighted polygenic risk score for predicting rates of cognitive decline in preclinical Alzheimer’s disease: a prospective longitudinal study. J Alzheimers Dis JAD. 2018;66:1193–1211. 10.3233/JAD-180713. [PubMed] [CrossRef] [Google Scholar]

77. Porter T, Villemagne VL, Savage G, et al. Cognitive gene risk profile for the prediction of cognitive decline in presymptomatic Alzheimer’s disease. Pers Med Psychiatry. 2018;7:14–20. 10.1016/j.pmip.2018.03.001. [CrossRef] [Google Scholar]

78. Lourida I, Hannon E, Littlejohns TJ, et al. Association of lifestyle and genetic risk with incidence of dementia. JAMA. 2019. 10.1001/jama.2019.9879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. de la Torre JC. Detection, prevention, and pre-clinical treatment of Alzheimer’s disease. J Alzheimers Dis JAD. 2014;42(suppl):S327–328. 10.3233/JAD-141800. [PubMed] [CrossRef] [Google Scholar]

80. Marston KJ, Brown BM, Rainey-Smith SR, Peiffer JJ. Resistance exercise-induced responses in physiological factors linked with cognitive health. J Alzheimers Dis JAD. 2019;68:39–64. 10.3233/JAD-181079. [PubMed] [CrossRef] [Google Scholar]

81. Cox KL, Cyarto EV, Ellis KA, et al. A randomized controlled trial of adherence to a 24-month home-based physical activity program and the health benefits for older adults at risk of Alzheimer’s Disease: the AIBL active-study. J Alzheimers Dis JAD. 2019;70:S187–205. 10.3233/JAD-180521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Cox KL, Cyarto EV, Etherton-Beer C, et al. A randomized controlled trial of physical activity with individual goal-setting and volunteer mentors to overcome sedentary lifestyle in older adults at risk of cognitive decline: the INDIGO trial protocol. BMC Geriatr. 2017;17:215. 10.1186/s12877-017-0617-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Brown BM, Rainey-Smith SR, Villemagne VL, et al. The relationship between sleep quality and brain amyloid burden. Sleep. 2016;39:1063–1068. 10.5665/sleep.5756. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Hill E, Clifton P, Goodwill AM, Dennerstein L, Campbell S, Szoeke C. Dietary patterns and β-amyloid deposition in aging Australian women. Alzheimers Dement N Y N. 2018;4:535–541. 10.1016/j.trci.2018.09.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Rainey-Smith SR, Mazzucchelli GN, Villemagne VL, et al. Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl Psychiatry. 2018;8:47. 10.1038/s41398-018-0094-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Rosenberg A, Mangialasche F, Ngandu T, Solomon A, Kivipelto M. Multidomain interventions to prevent cognitive impairment, Alzheimer’s disease, and dementia: from FINGER to World-Wide FINGERS. J Prev Alzheimers Dis. 2020;7:29–36. 10.14283/jpad.2019.41. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet Lond Engl. 2015;385:2255–2263. 10.1016/S0140-6736(15)60461-5. [PubMed] [CrossRef] [Google Scholar]

88. Shah T, Verdile G, Sohrabi H, et al. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry. 2014;4:e487. 10.1038/tp.2014.122. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Heffernan M, Andrews G, Fiatarone Singh MA, et al. Maintain your brain: protocol of a 3-year randomized controlled trial of a personalized multi-modal digital health intervention to prevent cognitive decline among community dwelling 55 to 77 year olds. J Alzheimers Dis JAD. 2019;70:S221–37. 10.3233/JAD-180572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Sachdev PS, Lipnicki DM, Kochan NA, et al. COSMIC (Cohort Studies of Memory in an International Consortium): an international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups. BMC Neurol. 2013;13:165. 10.1186/1471-2377-13-165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Lipnicki DM, Makkar SR, Crawford JD, Thalamuthu A, Kochan NA, Lima-Costa MF, et al. Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study. PLoS Med. 2019;16:e1002853. 10.1371/journal.pmed.1002853. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Filshtein TJ, Dugger BN, Jin L-W, Olichney JM, Farias ST, CarvajalCarmona L, et al. Neuropathological diagnoses of demented hispanic, black, and non-hispanic white decedents seen at an Alzheimer’s disease center. J Alzheimers Dis JAD. 2019;68:145–158. 10.3233/JAD-180992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Smith K, Flicker L, Lautenschlager NT, et al. High prevalence of dementia and cognitive impairment in Indigenous Australians. Neurology. 2008;71:1470–1473. 10.1212/01.wnl.0000320508.11013.4f. [PubMed] [CrossRef] [Google Scholar]

94. LoGiudice D, Smith K, Thomas J, et al. Kimberley Indigenous Cognitive Assessment tool (KICA): development of a cognitive assessment tool for older indigenous Australians. Int Psychogeriatr. 2006;18:269–280. 10.1017/S1041610205002681. [PubMed] [CrossRef] [Google Scholar]

95. Smith K, Gilchrist L, Taylor K, et al. Good spirit, good life: a quality of life tool and framework for older aboriginal peoples. Gerontologist. 2020. gnz185. 10.1093/geront/gnz185. [PubMed] [CrossRef] [Google Scholar]

96. LoGiudice DC, Smith K, Shadforth G, et al. Lungurra Ngoora–a pilot model of care for aged and disabled in a remote Aboriginal community–can it work?. Rural Remote Health. 2012;12:2078. [PubMed] [Google Scholar]

97. Anstey KJ, Peters R, Dementia Risk. Risk reduction, and translation into practice: an international research network for dementia prevention (IRNDP) special issue. J Alzheimers Dis JAD. 2019;70:S1–3. 10.3233/JAD-190506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air pollution and dementia: a systematic review. J Alzheimers Dis JAD. 2019;70:S145–63. 10.3233/JAD-180631. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Anstey KJ, Ee N, Eramudugolla R, Jagger C, Peters R. A systematic review of meta-analyses that evaluate risk factors for dementia to evaluate the quantity, quality, and global representativeness of evidence. J Alzheimers Dis JAD. 2019;70:S165–86. 10.3233/JAD-190181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Lautenschlager NL, Cox K, Hill KD, et al. Physical Activity Guidelines for Older Australians with Mild Cognitive Impairment or Subjective Cognitive Decline: A DCRC Funded Project. Melbourne: Dementia Collaborative Research Centres; 2018. [Google Scholar]

101. You E, Ellis KA, Cox K, Lautenschlager NT. Targeted physical activity for older adults with mild cognitive impairment and subjective cognitive decline. Med J Aust. 2019;210:394–395.e1. 10.5694/mja2.50153. [PubMed] [CrossRef] [Google Scholar]

102. Geda YE, Schneider LS, Gitlin LN, et al. Neuropsychiatric symptoms in Alzheimer’s disease: past progress and anticipation of the future. Alzheimers Dement J Alzheimers Assoc. 2013;9:602–608. 10.1016/j.jalz.2012.12.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Cummings J, Mintzer J, Brodaty H, et al. Agitation in cognitive disorders: international psychogeriatric association provisional consensus clinical and research definition. Int Psychogeriatr. 2015;27:7–17. 10.1017/S1041610214001963. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Fischer CE, Ismail Z, Youakim JM, et al. Revisiting criteria for psychosis in Alzheimer’s disease and related dementias: toward better phenotypic classification and biomarker research. J Alzheimers Dis JAD. 2020;73:1143–1156. 10.3233/JAD-190828. [PubMed] [CrossRef] [Google Scholar]

105. Robert P, Lanctôt KL, Agüera-Ortiz L, et al. Is it time to revise the diagnostic criteria for apathy in brain disorders? The 2018 international consensus group. Eur Psychiatry J Assoc Eur Psychiatr. 2018;54:71–76. 10.1016/j.eurpsy.2018.07.008. [PubMed] [CrossRef] [Google Scholar]

106. Wauters M, Elseviers M, Peeters L, De Meester D, Christiaens T, Petrovic M. Reducing psychotropic drug use in nursing homes in belgium: an implementation study for the roll-out of a practice improvement initiative. Drugs Aging. 2019;36:769–780. 10.1007/s40266-019-00686-5. [PubMed] [CrossRef] [Google Scholar]

107. Nygaard HA, Ruths S, Straand J, Naik M. Not less but different: psychotropic drug utilization trends in Norwegian nursing homes during a 12-year period. The Bergen District Nursing Home (BEDNURS) Study. Aging Clin Exp Res. 2004;16:277–282. 10.1007/bf03324552. [PubMed] [CrossRef] [Google Scholar]

108. Westbury J, Gee P, Ling T, Kitsos A, Peterson G. More action needed: psychotropic prescribing in Australian residential aged care. Aust N Z J Psychiatry. 2019;53:136–147. 10.1177/0004867418758919. [PubMed] [CrossRef] [Google Scholar]

109. Harrison F, Cations M, Jessop T, et al. Prolonged use of antipsychotic medications in long-term aged care in Australia: a snapshot from the HALT project. Int Psychogeriatr. 2020;32:335–345. 10.1017/S1041610219002011. [PubMed] [CrossRef] [Google Scholar]

110. Westbury JL, Gee P, Ling T, et al. RedUSe: reducing antipsychotic and benzodiazepine prescribing in residential aged care facilities. Med J Aust. 2018;208:398–403. [PubMed] [Google Scholar]

111. Aerts L, Cations M, Harrison F, et al. Why deprescribing antipsychotics in older people with dementia in long-term care is not always successful: insights from the HALT study. Int J Geriatr Psychiatry.2019;34:1572–1581. 10.1002/gps.5167. [PubMed] [CrossRef] [Google Scholar]

112. Chenoweth L, Forbes I, Fleming R, et al. PerCEN: a cluster randomized controlled trial of person-centered residential care and environment for people with dementia. Int Psychogeriatr. 2014;26:1147–1160. 10.1017/S1041610214000398. [PubMed] [CrossRef] [Google Scholar]

113. Low L-F, Goodenough B, Fletcher J, et al. The effects of humor therapy on nursing home residents measured using observational methods: the SMILE cluster randomized trial. J Am Med Dir Assoc. 2014;15:564–569. 10.1016/j.jamda.2014.03.017. [PubMed] [CrossRef] [Google Scholar]

114. Moyle W, Jones CJ, Murfield JE, et al. Use of a robotic seal as a therapeutic tool to improve dementia symptoms: a cluster-randomized controlled trial. J Am Med Dir Assoc. 2017;18:766–773. 10.1016/j.jamda.2017.03.018. [PubMed] [CrossRef] [Google Scholar]

115. Pu L, Moyle W, Jones C, Todorovic M. The effectiveness of social robots for older adults: a systematic review and meta-analysis of randomized controlled studies. Gerontologist. 2019;59:e37–51. 10.1093/geront/gny046. [PubMed] [CrossRef] [Google Scholar]

116. Moyle WThe promise of technology in the future of dementia care. Nat Rev Neurol. 2019;15:353–359. 10.1038/s41582-019-0188-y. [PubMed] [CrossRef] [Google Scholar]

117. Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;168:147–181. 10.1016/bs.pmbts.2019.06.013. [PubMed] [CrossRef] [Google Scholar]

118. Holtzman DM, John CM, Goate A. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3:77sr1. 10.1126/scitranslmed.3002369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Kobayashi Y, Kuhara T, Oki M, Xiao J-Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2019;10:511–520. 10.3920/BM2018.0170. [PubMed] [CrossRef] [Google Scholar]

120. Hwang Y-H, Park S, Paik J-W, et al. Efficacy and safety of lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: a 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11. 10.3390/nu11020305. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Giau VV, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J. Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients. 2018;10(11):1765. 10.3390/nu10111765. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. McIntee FL, Giannoni P, Blais S, et al. In vivo differential brain clearance and catabolism of monomeric and oligomeric Alzheimer’s Aβ protein. Front Aging Neurosci. 2016;8:223. 10.3389/fnagi.2016.00223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Li C-Q, Zheng Q, Wang Q, Zeng Q-P. Biotic/abiotic stress-driven Alzheimer’s disease. Front Cell Neurosci. 2016;10:269. 10.3389/fncel.2016.00269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Frank MG, Fonken LK, Watkins LR, Maier SF, Lowry CA. Could probiotics be used to mitigate neuroinflammation?. ACS Chem Neurosci. 2019;10:13–15. 10.1021/acschemneuro.8b00386. [PubMed] [CrossRef] [Google Scholar]

125. Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167:1469–1480.e12. 10.1016/j.cell.11.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Sun J, Xu J, Yang B, et al. Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res. 2020;64:e1900636. 10.1002/mnfr.201900636. [PubMed] [CrossRef] [Google Scholar]

127. Westfall S, Lomis N, Prakash S. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster