1 0 bằng bao nhiêu

Một thống kê của Google đã chỉ ra rằng hai trong những thắc mắc toán học phổ biến nhất là " 0 chia 0 bằng mấy ?" và " 0 mũ 0 ...

Một thống kê của Google đã chỉ ra rằng hai trong những thắc mắc toán học phổ biến nhất là "0 chia 0 bằng mấy?" và "0 mũ 0 bằng mấy?". Bài viết này sẽ góp phần giải đáp thắc mắc thứ hai: $0^0=?$

Trước hết ta điểm qua các máy tính, phần mềm, trang web đã tính "0 mũ 0" như thế nào?

Đầu tiên là Google. Công cụ tính toán của Google đã cho rằng: $0^0=1.$

Tiếp theo là phần mềm Calculator cài sẵn trong hệ điều hành Windows trên máy tính, kết quả vẫn là $0^0=1.$

Một trang web nổi tiếng về tính toán và vẽ đồ thị là Desmos cũng cho kết quả là: $0^0=1.$

Hầu hết các máy tính cài sẵn trên smartphone cũng cho kết quả như vậy. Hai phần mềm toán học chuyên dụng là Maple và Mathlab cũng cho ra $0^0=1.$

Vậy có phải "0 mũ 0 bằng 1"?

1. $0^0=1$

Có một số lập luận đã chỉ ra rằng $0^0=1.$ Sau đây là 2 trong số các lập luận đó.
Lập luận 1
Khảo sát và vẽ đồ thị hai hàm số $y=x^x$ và $y=[\sin x]^x$, ta được kết quả trong 2 hình sau:
Đồ thị hàm số y=x^x
Đồ thị hàm số y=[sin x]^xDựa vào đồ thị hai hàm số này ta có:
$$\lim_{x \to 0^+}x^x=1 \ \text{ và } \ \lim_{x \to 0^+}[\sin x]^x=1$$
Lập luận 2
Từ định lí khai triển nhị thức Newton:
$$[a+b]^n = \sum\limits_{k=0}^n C_n^k a^{n-k}b^k$$
Áp dụng cho $a=1, b=0$ ta được:
$$1=[1+0]^n= C_n^0.0^0 + C_n^1.0^1 + C_n^2.0^2 + ... + C_n^n.0^n$$ Để đẳng thức này đúng thì phải thừa nhận $0^0=1.$

2. $0^0$ là một dạng vô định

Một trang web tính toán nổi tiếng khác là Wolfram Alpha thì cho rằng $0^0$ là một dạng vô định.
Kết quả tính 0^0 từ WolframCác máy tính khoa học Casio fx mà học sinh Việt Nam thường dùng cũng hiển thị "Math Error" khi nhập "0^0".

Ở phần 1, ta có hai giới hạn dạng $0^0$ và đều tính ra bằng $1.$ Tuy nhiên, không phải mọi giới hạn dạng $0^0$ đều có kết quả như vậy. Chẳng hạn:
$$\lim\limits_{t \to 0^+} \left[ {e^{-1/t^2}} \right]^t = 0 \\ \lim\limits_{t \to 0^+} \left[ {e^{-1/t^2}} \right]^{-t} = +\infty \\ \lim\limits_{t \to 0^+} \left[ e^{-t} \right]^{2t} = e^{-2}$$ Ngoài ra, nếu xét hàm hai biến $f[x,y]=x^y$ thì hàm số này không tồn tại giới hạn khi $[x,y] \to [0,0].$

Như vậy $0^0$ lại là một dạng vô định.

3. Tóm lại

Chính vì những lý do trên nên đã có những sự khác biệt giữa các phần mềm, trang web tính toán nổi tiếng như đã đề cập ở mục 1 và mục 2. Trong hầu hết giáo trình và sách Toán học, người ta xem $0^0$ là dạng vô định nhưng có một số giáo trình khác lại quy ước $0^0 = 1.$

Tham khảo ThuNhan, Wolfram, Desmos.
Người đăng: MR Math.


Theo thư viện số Actforlibraries, để hiểu về số 0 thì trước hết chúng ta phải hiểu về định nghĩa của một con số. Một con số đơn giản là đại diện cho những thứ có thể liệt kê số lượng [đại lượng] và chúng ta có thể thay đổi những thứ đó để thay đổi giá trị của chúng. Nhưng vậy thì tại sao số 0 vẫn là một con số?

Bởi xét theo định nghĩa này thì số 0 không liệt kê bất kỳ số lượng nào của một thứ bất kỳ, bởi vì nó đơn giản là không có gì. Tuy nhiên, chúng ta phải lưu ý rằng không có gì vẫn là một đại lượng đong đếm, bởi nó cho thấy giá trị của một thứ mà chúng ta đang đo lường. Do vậy, trước hết chúng ta phải đi tới thống nhất rằng số 0 thực tế vẫn là một con số.

Tiếp theo, chúng ta phải tìm hiểu về số 0 theo nhiều cách tiếp cận. Chúng ta đều biết rằng, trong các bài học ở bậc phổ thông, bất kỳ số nào nhân với 0 cũng bằng 0, chúng ta cũng từng được học rằng một số được cộng 0 hoặc trừ 0 cũng bằng chính nó. Giờ đây, với mỗi đặc tính của con số sẽ luôn có một mô hình riêng. Chẳng hạn, chúng ta biết rằng nếu nhân một số với bất kỳ số nào lớn hơn số 1 thì sẽ được một số lớn hơn số đó, nếu trừ một số dương với một số hoặc cộng một số âm với một số thì sẽ nhận được một số có giá trị nhỏ hơn. Đồng thời, nếu dùng một số cộng với một số dương hoặc trừ một số âm thì kết quả sẽ cho ra số lớn hơn.

Giờ tới lượt chúng ta xem xét mô hình của phép chia. Có vẻ như mỗi lần chúng ta chia một số cho một con số gần hơn với số 0 thì sẽ được một số khác có đại lượng lớn hơn. Chẳng hạn 1/0,25 hay 1/0,5. Vấn đề là mỗi lần chúng ta tìm tới một con số tiệm cận với số 0 thì kết quả phép chia lại càng lớn hơn. Bởi vậy, chúng ta có thể giả định rằng bất kỳ số nào chia cho 0 cũng sẽ cho ra kết quả là vô cùng. Trong khi đó chúng ta không biết làm thế nào để có được con số tiệm cận [gần] với số 0 nhất, trong khi kết quả của các phép chia với các con số càng gần bằng số 0 thì càng lớn. Do vậy gần như không bao giờ có phép toán thỏa đáng cho phép chia số 0, điều này phù hợp đáp án vô cực mà chúng ta được học thời phổ thông.

Do đó, giờ đây chúng ta có thể hiểu rằng bất kỳ thứ gì chia cho 0 cũng có kết quả là vô cùng, trong đó chúng ta cần hiểu rằng vô cùng là giá trị không tuân theo bất kỳ một quy tắc toán học nào. Nếu dùng các phép cộng, trừ, nhân thì cũng đều có kết quả là chính nó. Nếu chia nó thì sẽ thu được một số vô cùng tiệm cận với số 0. Do đó, để dễ hình dung thì chúng ta có thể tạm kết luận vô cùng trong thực tế không phải là một con số cụ thể.

Một số người cho rằng, vô cùng không đại diện cho một đại lượng, một đại lượng trong đó có giá trị vô cùng lớn. Tuy nhiên, theo lập luận của cá nhân tác giả bài viết này thì nó vẫn là một đại lượng, chúng ta không thể làm gì để thay đổi giá trị của đại lượng này. Nếu chúng ta cộng, trừ, nhân nó với một số thì cũng sẽ được một số bằng chính nó [vô cùng]. Nếu chúng ta chia nó với một số gì đó kiểu như vô cực chẳng hạn, chúng ta vẫn sẽ được một con số vô cực. Nếu bạn chia vô cực với một số nào đó, như đã đề cập ở trên, thì kết quả vẫn là 0 hoặc vô cực. Chúng ta có thể đạt đến vô cực nhưng không bao giờ có thể thay đổi giá trị của cô cực.

Do vậy, vô cực không tuân theo bất kỳ quy tắc đại số thông thường nào, còn phép chia cho 0 cũng không tuân theo quy tắc của đại số. Nếu nhìn theo hướng đó, chúng ta không thể sử dụng bất kỳ con số nào để chia cho 0 [vì chúng không tuân theo quy tắc đại số thông thường]. Đây cũng chính là lý do mà chúng ta có thể kết luận rằng bất cứ số nào chia cho 0 cũng vô nghĩa và hoàn toàn không thể thực hiện được.

Chủ Đề