Synaptic cleft là gì

1. Sudhof T.C. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell. 2017;171:745–769. doi: 10.1016/j.cell.2017.10.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. O’Rourke N.A., Weiler N.C., Micheva K.D., Smith S.J. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat. Rev. Neurosci. 2012;13:365–379. doi: 10.1038/nrn3170. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Emes R.D., Grant S.G. Evolution of synapse complexity and diversity. Annu. Rev. Neurosci. 2012;35:111–131. doi: 10.1146/annurev-neuro-062111-150433. [PubMed] [CrossRef] [Google Scholar]

4. Missler M., Sudhof T.C., Biederer T. Synaptic cell adhesion. Cold Spring Harb. Perspect. Biol. 2012;4:a005694. doi: 10.1101/cshperspect.a005694. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Shen K., Scheiffele P. Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 2010;33:473–507. doi: 10.1146/annurev.neuro.051508.135302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Maeder C.I., Shen K. Genetic dissection of synaptic specificity. Curr. Opin. Neurobiol. 2011;21:93–99. doi: 10.1016/j.conb.2010.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Goda Y., Davis G.W. Mechanisms of synapse assembly and disassembly. Neuron. 2003;40:243–264. doi: 10.1016/S0896-6273[03]00608-1. [PubMed] [CrossRef] [Google Scholar]

8. Andreev V.P., Petyuk V.A., Brewer H.M., Karpievitch Y.V., Xie F., Clarke J., Camp D., Smith R.D., Lieberman A.P., Albin R.L., et al. Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J. Proteome Res. 2012;11:3053–3067. doi: 10.1021/pr3001546. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Moron J.A., Devi L.A. Use of proteomics for the identification of novel drug targets in brain diseases. J. Neurochem. 2007;102:306–315. doi: 10.1111/j.1471-4159.2007.04536.x. [PubMed] [CrossRef] [Google Scholar]

10. Abul-Husn N.S., Devi L.A. Neuroproteomics of the synapse and drug addiction. J. Pharmacol. Exp. Ther. 2006;318:461–468. doi: 10.1124/jpet.105.091520. [PubMed] [CrossRef] [Google Scholar]

11. Abul-Husn N.S., Bushlin I., Moron J.A., Jenkins S.L., Dolios G., Wang R., Iyengar R., Ma’ayan A., Devi L.A. Systems approach to explore components and interactions in the presynapse. Proteomics. 2009;9:3303–3315. doi: 10.1002/pmic.200800767. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Harris K.M., Weinberg R.J. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb. Perspect. Biol. 2012;4:a005587. doi: 10.1101/cshperspect.a005587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Biederer T., Kaeser P.S., Blanpied T.A. Transcellular Nanoalignment of Synaptic Function. Neuron. 2017;96:680–696. doi: 10.1016/j.neuron.2017.10.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Perez de Arce K., Schrod N., Metzbower S.W.R., Allgeyer E., Kong G.K., Tang A.H., Krupp A.J., Stein V., Liu X., Bewersdorf J., et al. Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains. Neuron. 2015;88:1165–1172. doi: 10.1016/j.neuron.2015.11.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Biesemann C., Gronborg M., Luquet E., Wichert S.P., Bernard V., Bungers S.R., Cooper B., Varoqueaux F., Li L., Byrne J.A., et al. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J. 2014;33:157–170. doi: 10.1002/embj.201386120. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Morciano M., Burre J., Corvey C., Karas M., Zimmermann H., Volknandt W. Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis. J. Neurochem. 2005;95:1732–1745. doi: 10.1111/j.1471-4159.2005.03506.x. [PubMed] [CrossRef] [Google Scholar]

17. Takamori S., Holt M., Stenius K., Lemke E.A., Gronborg M., Riedel D., Urlaub H., Schenck S., Brugger B., Ringler P., et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127:831–846. doi: 10.1016/j.cell.2006.10.030. [PubMed] [CrossRef] [Google Scholar]

18. Boyken J., Gronborg M., Riedel D., Urlaub H., Jahn R., Chua J.J. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron. 2013;78:285–297. doi: 10.1016/j.neuron.2013.02.027. [PubMed] [CrossRef] [Google Scholar]

19. Morciano M., Beckhaus T., Karas M., Zimmermann H., Volknandt W. The proteome of the presynaptic active zone: from docked synaptic vesicles to adhesion molecules and maxi-channels. J. Neurochem. 2009;108:662–675. doi: 10.1111/j.1471-4159.2008.05824.x. [PubMed] [CrossRef] [Google Scholar]

20. Bayes A., Collins M.O., Croning M.D., van de Lagemaat L.N., Choudhary J.S., Grant S.G. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One. 2012;7:e46683. doi: 10.1371/journal.pone.0046683. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Distler U., Schmeisser M.J., Pelosi A., Reim D., Kuharev J., Weiczner R., Baumgart J., Boeckers T.M., Nitsch R., Vogt J., et al. In-depth protein profiling of the postsynaptic density from mouse hippocampus using data-independent acquisition proteomics. Proteomics. 2014;14:2607–2613. doi: 10.1002/pmic.201300520. [PubMed] [CrossRef] [Google Scholar]

22. Collins M.O., Husi H., Yu L., Brandon J.M., Anderson C.N., Blackstock W.P., Choudhary J.S., Grant S.G. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 2006;97:16–23. doi: 10.1111/j.1471-4159.2005.03507.x. [PubMed] [CrossRef] [Google Scholar]

23. Selimi F., Cristea I.M., Heller E., Chait B.T., Heintz N. Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol. 2009;7:e83. doi: 10.1371/journal.pbio.1000083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Heller E.A., Zhang W., Selimi F., Earnheart J.C., Slimak M.A., Santos-Torres J., Ibanez-Tallon I., Aoki C., Chait B.T., Heintz N. The biochemical anatomy of cortical inhibitory synapses. PLoS One. 2012;7:e39572. doi: 10.1371/journal.pone.0039572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Han S., Li J., Ting A.Y. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol. 2018;50:17–23. doi: 10.1016/j.conb.2017.10.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Chen C.L., Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells. Wiley Interdiscip. Rev. Dev. Biol. 2017;6 doi: 10.1002/wdev.272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Varnaite R., MacNeill S.A. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics. 2016;16:2503–2518. doi: 10.1002/pmic.201600123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Rhee H.W., Zou P., Udeshi N.D., Martell J.D., Mootha V.K., Carr S.A., Ting A.Y. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science. 2013;339:1328–1331. doi: 10.1126/science.1230593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Loh K.H., Stawski P.S., Draycott A.S., Udeshi N.D., Lehrman E.K., Wilton D.K., Svinkina T., Deerinck T.J., Ellisman M.H., Stevens B., et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell. 2016;166:1295–1307.e21. doi: 10.1016/j.cell.2016.07.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Reinke A.W., Balla K.M., Bennett E.J., Troemel E.R. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun. 2017;8:14023. doi: 10.1038/ncomms14023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Reinke A.W., Mak R., Troemel E.R., Bennett E.J. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Sci. Adv. 2017;3:e1602426. doi: 10.1126/sciadv.1602426. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Uezu A., Kanak D.J., Bradshaw T.W., Soderblom E.J., Catavero C.M., Burette A.C., Weinberg R.J., Soderling S.H. Identification of an elaborate complex mediating postsynaptic inhibition. Science. 2016;353:1123–1129. doi: 10.1126/science.aag0821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., Feldman J.L., Perrimon N., Ting A.Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018;36:880–887. doi: 10.1038/nbt.4201. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Fogel A.I., Akins M.R., Krupp A.J., Stagi M., Stein V., Biederer T. SynCAMs organize synapses through heterophilic adhesion. J. Neurosci. 2007;27:12516–12530. doi: 10.1523/JNEUROSCI.2739-07.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Thomas L.A., Akins M.R., Biederer T. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. J. Comp. Neurol. 2008;510:47–67. doi: 10.1002/cne.21773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Biederer T., Sara Y., Mozhayeva M., Atasoy D., Liu X., Kavalali E.T., Sudhof T.C. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science. 2002;297:1525–1531. doi: 10.1126/science.1072356. [PubMed] [CrossRef] [Google Scholar]

37. Robbins E.M., Krupp A.J., Perez de Arce K., Ghosh A.K., Fogel A.I., Boucard A., Sudhof T.C., Stein V., Biederer T. SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron. 2010;68:894–906. doi: 10.1016/j.neuron.2010.11.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Biederer T., Scheiffele P. Mixed-culture assays for analyzing neuronal synapse formation. Nat. Protoc. 2007;2:670–676. doi: 10.1038/nprot.2007.92. [PubMed] [CrossRef] [Google Scholar]

39. Zolotukhin S., Byrne B.J., Mason E., Zolotukhin I., Potter M., Chesnut K., Summerford C., Samulski R.J., Muzyczka N. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6:973–985. doi: 10.1038/sj.gt.3300938. [PubMed] [CrossRef] [Google Scholar]

40. Hommel J.D., Sears R.M., Georgescu D., Simmons D.L., DiLeone R.J. Local gene knockdown in the brain using viral-mediated RNA interference. Nat. Med. 2003;9:1539–1544. doi: 10.1038/nm964. [PubMed] [CrossRef] [Google Scholar]

41. Fukumoto Y., Obata Y., Ishibashi K., Tamura N., Kikuchi I., Aoyama K., Hattori Y., Tsuda K., Nakayama Y., Yamaguchi N. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology. 2010;62:73–82. doi: 10.1007/s10616-010-9259-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. doi: 10.1021/ac025747h. [PubMed] [CrossRef] [Google Scholar]

43. Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. [PubMed] [CrossRef] [Google Scholar]

44. Vizcaino J.A., Csordas A., del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–D456. doi: 10.1093/nar/gkv1145. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Schwanhausser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. [PubMed] [CrossRef] [Google Scholar]

46. Krey J.F., Wilmarth P.A., Shin J.B., Klimek J., Sherman N.E., Jeffery E.D., Choi D., David L.L., Barr-Gillespie P.G. Accurate label-free protein quantitation with high- and low-resolution mass spectrometers. J. Proteome Res. 2014;13:1034–1044. doi: 10.1021/pr401017h. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Hung V., Udeshi N.D., Lam S.S., Loh K.H., Cox K.J., Pedram K., Carr S.A., Ting A.Y. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 2016;11:456–475. doi: 10.1038/nprot.2016.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Stanly T.A., Fritzsche M., Banerji S., Garcia E., Bernardino de la Serna J., Jackson D.G., Eggeling C. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol. Open. 2016;5:1343–1350. doi: 10.1242/bio.019943. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Ovesny M., Krizek P., Borkovec J., Svindrych Z., Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30:2389–2390. doi: 10.1093/bioinformatics/btu202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Udeshi N.D., Pedram K., Svinkina T., Fereshetian S., Myers S.A., Aygun O., Krug K., Clauser K., Ryan D., Ast T., et al. Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nat. Methods. 2017;14:1167–1170. doi: 10.1038/nmeth.4465. [PubMed] [CrossRef] [Google Scholar]

51. Lam S.S., Martell J.D., Kamer K.J., Deerinck T.J., Ellisman M.H., Mootha V.K., Ting A.Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods. 2015;12:51–54. doi: 10.1038/nmeth.3179. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Stagi M., Fogel A.I., Biederer T. SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proc. Natl. Acad. Sci. USA. 2010;107:7568–7573. doi: 10.1073/pnas.0911798107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Berglund G.I., Carlsson G.H., Smith A.T., Szoke H., Henriksen A., Hajdu J. The catalytic pathway of horseradish peroxidase at high resolution. Nature. 2002;417:463–468. doi: 10.1038/417463a. [PubMed] [CrossRef] [Google Scholar]

55. Hung V., Zou P., Rhee H.W., Udeshi N.D., Cracan V., Svinkina T., Carr S.A., Mootha V.K., Ting A.Y. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell. 2014;55:332–341. doi: 10.1016/j.molcel.2014.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Bantscheff M., Lemeer S., Savitski M.M., Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Analyt. Bioanal. Chem. 2012;404:939–965. doi: 10.1007/s00216-012-6203-4. [PubMed] [CrossRef] [Google Scholar]

57. Schulze W.X., Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu. Rev. Plant Biol. 2010;61:491–516. doi: 10.1146/annurev-arplant-042809-112132. [PubMed] [CrossRef] [Google Scholar]

58. Ankney J.A., Muneer A., Chen X. Relative and Absolute Quantitation in Mass Spectrometry-Based Proteomics. Annu. Rev. Analyt. Chem. 2018;11:49–77. doi: 10.1146/annurev-anchem-061516-045357. [PubMed] [CrossRef] [Google Scholar]

59. Hassan Y.I., Zempleni J. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr. Rev. 2008;66:721–725. doi: 10.1111/j.1753-4887.2008.00127.x. [PubMed] [CrossRef] [Google Scholar]

60. Kuroishi T., Rios-Avila L., Pestinger V., Wijeratne S.S., Zempleni J. Biotinylation is a natural, albeit rare, modification of human histones. Mol. Genet. Metab. 2011;104:537–545. doi: 10.1016/j.ymgme.2011.08.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Jitrapakdee S., Wallace J.C. The biotin enzyme family: conserved structural motifs and domain rearrangements. Curr. Protein Pept. Sci. 2003;4:217–229. doi: 10.2174/1389203033487199. [PubMed] [CrossRef] [Google Scholar]

62. Tytgat H.L., Schoofs G., Driesen M., Proost P., Van Damme E.J., Vanderleyden J., Lebeer S. Endogenous biotin-binding proteins: an overlooked factor causing false positives in streptavidin-based protein detection. Microb. Biotechnol. 2015;8:164–168. doi: 10.1111/1751-7915.12150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Peri S., Navarro J.D., Amanchy R., Kristiansen T.Z., Jonnalagadda C.K., Surendranath V., Niranjan V., Muthusamy B., Gandhi T.K., Gronborg M., et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003;13:2363–2371. doi: 10.1101/gr.1680803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Mishra G.R., Suresh M., Kumaran K., Kannabiran N., Suresh S., Bala P., Shivakumar K., Anuradha N., Reddy R., Raghavan T.M., et al. Human protein reference database—2006 update. Nucleic Acids Res. 2006;34:D411–D414. doi: 10.1093/nar/gkj141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Keshava Prasad T.S., Goel R., Kandasamy K., Keerthikumar S., Kumar S., Mathivanan S., Telikicherla D., Raju R., Shafreen B., Venugopal A., et al. Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009;37:D767–D772. doi: 10.1093/nar/gkn892. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Weingarten J., Lassek M., Mueller B.F., Rohmer M., Lunger I., Baeumlisberger D., Dudek S., Gogesch P., Karas M., Volknandt W. The proteome of the presynaptic active zone from mouse brain. Mol. Cell. Neurosci. 2014;59:106–118. doi: 10.1016/j.mcn.2014.02.003. [PubMed] [CrossRef] [Google Scholar]

67. Pocklington A.J., Cumiskey M., Armstrong J.D., Grant S.G. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. 2006;2:0023. doi: 10.1038/msb4100041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Schwenk J., Baehrens D., Haupt A., Bildl W., Boudkkazi S., Roeper J., Fakler B., Schulte U. Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron. 2014;84:41–54. doi: 10.1016/j.neuron.2014.08.044. [PubMed] [CrossRef] [Google Scholar]

69. Hayashi N., Oohira A., Miyata S. Synaptic localization of receptor-type protein tyrosine phosphatase ζ/β in the cerebral and hippocampal neurons of adult rats. Brain Res. 2005;1050:163–169. doi: 10.1016/j.brainres.2005.05.047. [PubMed] [CrossRef] [Google Scholar]

70. Lein E.S., Hawrylycz M.J., Ao N., Ayres M., Bensinger A., Bernard A., Boe A.F., Boguski M.S., Brockway K.S., Byrnes E.J., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–176. doi: 10.1038/nature05453. [PubMed] [CrossRef] [Google Scholar]

71. Roy M., Sorokina O., McLean C., Tapia-Gonzalez S., DeFelipe J., Armstrong J.D., Grant S.G.N. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes. 2018;6:31. doi: 10.3390/proteomes6030031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Zhu F., Cizeron M., Qiu Z., Benavides-Piccione R., Kopanitsa M.V., Skene N.G., Koniaris B., DeFelipe J., Fransen E., Komiyama N.H., et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781–799.e10. doi: 10.1016/j.neuron.2018.07.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Roy M., Sorokina O., Skene N., Simonnet C., Mazzo F., Zwart R., Sher E., Smith C., Armstrong J.D., Grant S.G.N. Proteomic analysis of postsynaptic proteins in regions of the human neocortex. Nat. Neurosci. 2018;21:130–138. doi: 10.1038/s41593-017-0025-9. [PubMed] [CrossRef] [Google Scholar]

74. Carlyle B.C., Kitchen R.R., Kanyo J.E., Voss E.Z., Pletikos M., Sousa A.M.M., Lam T.T., Gerstein M.B., Sestan N., Nairn A.C. A multiregional proteomic survey of the postnatal human brain. Nat. Neurosci. 2017;20:1787–1795. doi: 10.1038/s41593-017-0011-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Martin E.A., Muralidhar S., Wang Z., Cervantes D.C., Basu R., Taylor M.R., Hunter J., Cutforth T., Wilke S.A., Ghosh A., et al. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. Elife. 2015;4:e09395. doi: 10.7554/eLife.09395. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Sylwestrak E.L., Ghosh A. Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science. 2012;338:536–540. doi: 10.1126/science.1222482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Williams M.E., de Wit J., Ghosh A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron. 2010;68:9–18. doi: 10.1016/j.neuron.2010.09.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Williams M.E., Wilke S.A., Daggett A., Davis E., Otto S., Ravi D., Ripley B., Bushong E.A., Ellisman M.H., Klein G., et al. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron. 2011;71:640–655. doi: 10.1016/j.neuron.2011.06.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. de Wit J., Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 2016;17:22–35. doi: 10.1038/nrn.2015.3. [PubMed] [CrossRef] [Google Scholar]

80. Yamagata M., Sanes J.R. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature. 2008;451:465–469. doi: 10.1038/nature06469. [PubMed] [CrossRef] [Google Scholar]

81. Duan X., Krishnaswamy A., De la Huerta I., Sanes J.R. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell. 2014;158:793–807. doi: 10.1016/j.cell.2014.06.047. [PubMed] [CrossRef] [Google Scholar]

82. Linhoff M.W., Lauren J., Cassidy R.M., Dobie F.A., Takahashi H., Nygaard H.B., Airaksinen M.S., Strittmatter S.M., Craig A.M. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61:734–749. doi: 10.1016/j.neuron.2009.01.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. De Wit J., Sylwestrak E., O’Sullivan M.L., Otto S., Tiglio K., Savas J.N., Yates J.R., Comoletti D., Taylor P., Ghosh A. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron. 2009;64:799–806. doi: 10.1016/j.neuron.2009.12.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Chamma I., Letellier M., Butler C., Tessier B., Lim K.H., Gauthereau I., Choquet D., Sibarita J.B., Park S., Sainlos M., et al. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat. Commun. 2016;7:10773. doi: 10.1038/ncomms10773. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Santuy A., Rodriguez J.R., DeFelipe J., Merchan-Perez A. Study of the Size and Shape of Synapses in the Juvenile Rat Somatosensory Cortex with 3D Electron Microscopy. eNeuro. 2018;5:17. doi: 10.1523/ENEURO.0377-17.2017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Schikorski T., Stevens C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 1997;17:5858–5867. doi: 10.1523/JNEUROSCI.17-15-05858.1997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Tamura H., Fukada M., Fujikawa A., Noda M. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci. Lett. 2006;399:33–38. doi: 10.1016/j.neulet.2006.01.045. [PubMed] [CrossRef] [Google Scholar]

88. Niisato K., Fujikawa A., Komai S., Shintani T., Watanabe E., Sakaguchi G., Katsuura G., Manabe T., Noda M. Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J. Neurosci. 2005;25:1081–1088. doi: 10.1523/JNEUROSCI.2565.04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Buxbaum J.D., Georgieva L., Young J.J., Plescia C., Kajiwara Y., Jiang Y., Moskvina V., Norton N., Peirce T., Williams H., et al. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol. Psychiatry. 2008;13:162–172. doi: 10.1038/sj.mp.4001991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Takahashi N., Sakurai T., Bozdagi-Gunal O., Dorr N.P., Moy J., Krug L., Gama-Sosa M., Elder G.A., Koch R.J., Walker R.H., et al. Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl. Psychiatry. 2011;1:e8. doi: 10.1038/tp.2011.8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Cressant A., Dubreuil V., Kong J., Kranz T.M., Lazarini F., Launay J.M., Callebert J., Sap J., Malaspina D., Granon S., et al. Loss-of-function of PTPR γ and ζ, observed in sporadic schizophrenia, causes brain region-specific deregulation of monoamine levels and altered behavior in mice. Psychopharmacology. 2017;234:575–587. doi: 10.1007/s00213-016-4490-8. [PubMed] [CrossRef] [Google Scholar]

92. Nishiwaki T., Maeda N., Noda M. Characterization and Developmental Regulation of Proteoglycan-Type Protein Tyrosine Phosphatase ζ/RPTP β Isoforms. J. Biochem. 1998;123:458–467. doi: 10.1093/oxfordjournals.jbchem.a021959. [PubMed] [CrossRef] [Google Scholar]

93. Chow J.P., Fujikawa A., Shimizu H., Suzuki R., Noda M. Metalloproteinase- and γ-secretase-mediated cleavage of protein-tyrosine phosphatase receptor type Z. J. Biol. Chem. 2008;283:30879–30889. doi: 10.1074/jbc.M802976200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Canoll P.D., Petanceska S., Schlessinger J., Musacchio J.M. Three forms of RPTP-β are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture. J. Neurosci. Res. 1996;44:199–215. doi: 10.1002/[SICI]1097-4547[19960501]44:33.0.CO;2-B. [PubMed] [CrossRef] [Google Scholar]

95. Giza J.I., Jung Y., Jeffrey R.A., Neugebauer N.M., Picciotto M.R., Biederer T. The synaptic adhesion molecule SynCAM 1 contributes to cocaine effects on synapse structure and psychostimulant behavior. Neuropsychopharmacology. 2013;38:628–638. doi: 10.1038/npp.2012.226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Video liên quan

Chủ Đề