Từ các chữ số 0 1 2 3 4 5 lập được bao nhiêu số tự nhiên có 4 chữ số?

adsense

Câu hỏi:
Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số lẻ gồm 4 chữ số khác nhau?


A. 124


B. 134


C. 144


D. 154

Lời Giải:
Đây là các bài toán về Hoán vị, Chỉnh hợp, Tổ hợp có áp dụng các phép đếm.

Gọi số lẻ đang xét gồm 4 chữ số có dạng  \(
\overline {abcd} \) trong đó d∈{1,3,5};a∈{1,2,3,4,5}, b và c thuộc  tập {0,1,2,3,4,5}.

Lập số đó theo quy trình: Chọn d rồi đến a đến b rồi đến c.

Ta có 3 cách chọn d.

Khi d đã chọn thì a còn 5−1=4 cách chọn.

adsense

(Lưu ý tập {1,3,5}⊂{1,2,3,4,5}).

Khi đó d, a đã chọn thì 6−2=4 cách chọn b và khi d, a, b đã chọn thì c có 3 cách chọn.

Vậy các số lẻ có thể lập được là 3.4.4.3=144

===============

====================
Thuộc chủ đề: Trắc nghiệm Tổ hợp

Phương pháp giải:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} \,\,\left( {a \ne 0} \right)\).

- Chọn lần lượt từng chữ số.

- Áp dụng quy tắc nhân.

Lời giải chi tiết:

Gọi số tự nhiên có 4 chữ số là \(\overline {abcd} \,\,\left( {a \ne 0} \right)\).

Chọn \(a\) có 6 cách.

Chọn \(b,\,\,c,\,\,d\), mỗi chữ số có 7 cách chọn.

Vậy có \({6.7^3} = 2058\) số.

Chọn A.

Số tự nhiên thỏa mãn có dạng  với a,b,c,d ∈ A  và đôi một khác nhau.

TH1: d=0

Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có  5.4.3 = 60 số.

TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4

Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.

Theo quy tắc nhân có: 2.4.4.3=96 số

Vậy có tất cả: 96 + 60 = 156 số.

Chọn C.