Cách giải bài toán về tổ hợp xác suất năm 2024
Phần Tổ hợp Toán lớp 11 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có lời giải. Vào Xem chi tiết để theo dõi các dạng bài Tổ hợp hay nhất tương ứng. Show
Các dạng bài tập Tổ hợp chọn lọc, có lời giải
Cách giải bài toán đếm số tự nhiênA. Phương pháp giải & Ví dụDựa vào hai quy tắc cộng, quy tắc nhân và các khái niệm hoán vị, chỉnh hợp, tổ hợp, đếm gián tiếp, đếm phần bù. Một số dấu hiệu giúp chúng ta nhận biết được hoán vị, chỉnh hợp hay tổ hợp.
♦ Tất cả n phần tử đều phải có mặt ♦ Mỗi phần tử xuất hiện một lần. ♦ Có thứ tự giữa các phần tử.
♦ Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần ♦ k phần tử đã cho được sắp xếp thứ tự.
♦ Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần ♦ Không quan tâm đến thứ tự k phần tử đã chọn. Ví dụ minh họaBài 1: Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3? Đặt y = 23, xét các số trong đó a,b,c,d,e đôi một khác nhau và thuộc tập {0,1,y,4,5}. Số cách chọn một số thỏa mãn điều kiện trên là một hoán vị của 5 phần tử (tính cả trường hợp a = 0). Vậy có P5 số. Nếu a = 0 thì số số lập được với a,b,c,d,e như trên là P4. Vậy có (P5 - P4) = 96 số có 5 chữ số thỏa mãn điều kiện trên. Khi ta hoán vị 2,3 trong y ta được hai số khác nhau Nên có 96.2 = 192 số thỏa yêu cầu bài toán. Cách giải phương trình, bất phương trình tổ hợpA. Phương pháp giải & Ví dụDựa vào công thức tổ hợp, chỉnh hợp hoán vị để chuyển phương trình, bất phương trình, hệ phương trình tổ hợp về phương trình, bất phương trình, hệ phương trình đại số. Ví dụ minh họaBài 1: Đáp án và hướng dẫn giải Bài 2: Đáp án và hướng dẫn giải Xác định hệ số, số hạng trong khai triển nhị thức Niu-tơnA. Phương pháp giải & Ví dụSố hạng chứa xm ứng với giá trị k thỏa mãn: np – pk + qk = m. Vậy hệ số của số hạng chứa xm là: với giá trị k đã tìm được ở trên. Nếu k không nguyên hoặc k > n thì trong khai triển không chứa xm , hệ số phải tìm bằng 0. Chú ý: Xác định hệ số của số hạng chứa xm trong khai triển P(x) = (a + bxp + cxq)n P(x) = (a + bxp + cxq)n được viết dưới dạng a0 + a1x + ...+ a2nx2n Ta làm như sau: * Viết P(x) = (a + bxp + cxq)n * Viết số hạng tổng quát khi khai triển các số hạng dạng (bxp+cxq)k thành một đa thức theo luỹ thừa của x. * Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của xm. Chú ý: Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn Ta làm như sau: * Tính hệ số ak theo k và n; * Giải bất phương trình ak-1 ≤ ak với ẩn số k; * Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên. Ví dụ minh họaBài 1: Tìm hệ số của x5 trong khai triển đa thức của: x(1-2x)5+x2 (1+3x)10 Đáp án và hướng dẫn giải Đặt f(x)=x(1-2x)5+x2 (1+3x)10 Ta có : Vậy hệ số của x5 trong khai triển đa thức của f(x) ứng với k = 4 và i = 3 là: Bài 2: Đa thức P(x) =(1+3x+2x2)10=a0 + a1 x + ⋯ + a20 x20. Tìm a15 Đáp án và hướng dẫn giải với 0 ≤ i ≤ k ≤ 10. Do đó k + i = 15 với các trường hợp k=10, i=5 hoặc k=9, i=6 hoặc k=8, i=7 Bài tập tự luyệnBài 1. Cho hai đường thẳng song song d1, d2. Trên đường thẳng d1 lấy 10 điểm phân biệt, trên d2 lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên. Bài 2. Có 15 học sinh lớp A, trong đó có Khánh và 10 học sinh lớp B, trong đó có Oanh. Hỏi có bao nhiêu cách lập một đội tình nguyện gồm 7 học sinh trong đó có 4 học sinh lớp A, 3 học sinh lớp B và trong đó chỉ có một trong hai em Hùng và Oanh. Bài 3. Một lớp có 33 học sinh, trong đó có 7 nữ. Cần chia lớp thành 3 tổ, tổ 1 có 10 học sinh, tổ 2 có 11 học sinh, tổ 3 có 12 học sinh sao cho trong mỗi tổ có ít nhất 2 học sinh nữ. Hỏi có bao nhiêu cách chia như vậy? Bài 4. Cho dãy số 1, 2, 3, 4, 5, 6 chúng ta sẽ có bao nhiêu tập hợp bao gồm 3 chữ số khác nhau được tạo thành từ dãy số đó? Bài 5. Hai nhóm người cần mua nền nhà, nhóm thứ nhất có 2 người và họ muốn mua 2 nền kề nhau, nhóm thứ hai có 3 người và họ muốn mua 3 nền kề nhau. Họ tìm được một lô đất chia thành 7 nền đang rao bán (các nền như nhau và chưa có người mua). Tính số cách chọn nền của mỗi người thỏa mãn yêu cầu trên. Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
Săn shopee siêu SALE :
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official Tổng đài hỗ trợ đăng ký : 084 283 45 85 Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube: Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn. |