Các dạng bài toán có lời văn lớp 6 năm 2024
Bài 2: Trong rổ có 40 quả cam. Số táo bằng \(\dfrac{9}{{10}}\) số cam và số cam bằng \(\dfrac{{10}}{{11}}\) số xoài. Hỏi có tất cả bao nhiêu quả cam, táo và xoài? Bài 3: Một mảnh vườn hình chữ nhật có chiều dài 60m, chiều rộng bằng \(\dfrac{2}{3}\) chiều dài.
Bài 4: Một trường học có 516 học sinh gồm bốn khối 6, 7, 8 và 9. Số học sinh khối 6 bằng \(\dfrac{1}{6}\) số học sinh cả trường. Số học sinh khối 7 và 8 bằng \(\dfrac{5}{9}\) số học sinh còn lại. Tính số học sinh khối \(9\). Bài 5: Trong một hội nghị học sinh giỏi, số học sinh nữ chiếm \(\dfrac{2}{5}\) tổng số học sinh , trong đó \(\dfrac{3}{8}\) số nữ là học sinh lớp 6. Trong số học sinh nam dự hội nghị, \(\dfrac{2}{9}\) là học sinh lớp \(6\). Biết số học sinh dự hội nghị trong khoảng từ 100 đến 170. Tính số học sinh nam và nữ lớp \(6\). Lời giải chi tiết: Bài 1:
Phương pháp
Lời giải
\(\dfrac{5}{6}\) của một số bằng 45 thì số đó là: \(45:\dfrac{5}{6} = 54\) Bài 2: Trong rổ có 40 quả cam. Số táo bằng \(\dfrac{9}{{10}}\) số cam và số cam bằng \(\dfrac{{10}}{{11}}\) số xoài. Hỏi có tất cả bao nhiêu quả cam, táo và xoài? Phương pháp + Áp dụng bài toán tìm \(\dfrac{m}{n}\) của \(a\) là: \(a.\dfrac{m}{n}\), tính được số quả táo. + Áp dụng dạng toán tìm \(a\) biết \(\dfrac{m}{n}\) của \(a\) là \(b\). Ta có: \(a = b:\dfrac{m}{n}\), tính được số quả xoài. Lời giải Trong rổ có số quả táo là: \(40.\dfrac{9}{{10}} = 36\) (quả) Trong rổ có số quả xoài là: \(40:\dfrac{{10}}{{11}} = 44\) (quả) Trong rổ có tất cả số quả táo, cam và xoài là: \(40 + 36 + 44 = 120\) (quả) Bài 3: Một mảnh vườn hình chữ nhật có chiều dài 60m, chiều rộng bằng \(\dfrac{2}{3}\) chiều dài.
Phương pháp Vận dụng quy tắc tìm giá trị phân số của một số cho trước Lời giải Chiều rộng của mảnh vườn là: \(60.\dfrac{2}{3} = 40\) \(\left( m \right)\)
Diện tích phần vườn còn lại là: \(2400 - 1440 = 960\left( {{m^2}} \right)\) Diện tích phần vườn nuôi gà là: \(960.\dfrac{3}{{20}} = 144\left( {{m^2}} \right)\) Bài 4: Một trường học có 516 học sinh gồm bốn khối 6, 7, 8 và 9. Số học sinh khối 6 bằng \(\dfrac{1}{6}\) số học sinh cả trường. Số học sinh khối 7 và 8 bằng \(\dfrac{5}{9}\) số học sinh còn lại. Tính số học sinh khối \(9\). Phương pháp \(\dfrac{m}{n}\) của số \(a\) bằng \(a.\dfrac{m}{n}\) Lời giải Số học sinh khối 6 là: \(516 \cdot \dfrac{1}{4} = 129\)(học sinh) Số học sinh còn lại là: \(516 - 129 = 387\) (học sinh) Số học sinh khối 7 và 8 là: \(287 \cdot \dfrac{5}{9} = 215\)(học sinh) Số học sinh khối 9 là: \(387 - 215 = 172\) (học sinh) Bài 5: Trong một hội nghị học sinh giỏi, số học sinh nữ chiếm \(\dfrac{2}{5}\) tổng số học sinh , trong đó \(\dfrac{3}{8}\) số nữ là học sinh lớp 6. Trong số học sinh nam dự hội nghị, \(\dfrac{2}{9}\) là học sinh lớp \(6\). Biết số học sinh dự hội nghị trong khoảng từ 100 đến 170. Tính số học sinh nam và nữ lớp \(6\). Phương pháp Gọi số học sinh tham dự hội nghị là \(x\left( {100 \le x \le 170,{\kern 1pt} {\kern 1pt} x \in {\mathbb{N}^*}} \right)\) (học sinh). Phân tích đề và sử dụng bài toán: \(\dfrac{m}{n}\) của số \(a\) bằng \(a.\dfrac{m}{n}\) Lời giải Gọi số học sinh tham dự hội nghị là \(x\left( {100 \le x \le 170,{\kern 1pt} {\kern 1pt} x \in {\mathbb{N}^*}} \right)\) (học sinh). Số học sinh nữ lớp 6 có mặt bằng \(\dfrac{2}{5} \cdot \dfrac{3}{8} = \dfrac{3}{{20}}\) tổng số học sinh tham dự hay bằng \(\dfrac{{3x}}{{20}}\). Số học sinh nam lớp 6 là: \(\dfrac{{3x}}{5} \cdot \dfrac{2}{9} = \dfrac{{2x}}{{15}}\) Do số học sinh phải là số tự nhiên nên x phải chia hết cho cả 20 và 160, có \(100 \le x \le 170\) nên \(x = 120\). |